JEE Delight | ISI UGA 2024 | Q23 | "Master Limits with Sandwich Theorem and Definite Integrals

Поділитися
Вставка
  • Опубліковано 17 лис 2024

КОМЕНТАРІ • 16

  • @harshuldesai8901
    @harshuldesai8901 6 місяців тому +8

    You can form r/n inside the log by adding (r/n)log(n). Split the limit into two: lim_{n->infty} -1/(4log(n)) + lim_{n->infty} (n+2)(n-1)/2n^2 = 0 + 1/2 = 1/2.

    • @harshuldesai8901
      @harshuldesai8901 6 місяців тому

      The -1/4 comes from the integral

    • @Ajay_Vector
      @Ajay_Vector 6 місяців тому +4

      Ya I did the same !

    • @rishabhhappy
      @rishabhhappy 6 місяців тому

      @@harshuldesai8901 nahh....... 1/2 hi aata hai from this method also

    • @harshuldesai8901
      @harshuldesai8901 6 місяців тому

      @@rishabhhappy I meant that the -1/4 in the limit lim_{n->infty} -1/(4log(n)) comes from the integral. The final answer is still 1/2

    • @rishabhhappy
      @rishabhhappy 6 місяців тому

      @@harshuldesai8901 achaa bhai sorry i misunderstood.....

  • @GovinduNaik-js1gk
    @GovinduNaik-js1gk 6 місяців тому +5

    Eagerly waiting for UGB solutions..

  • @subhrayanbarman1654
    @subhrayanbarman1654 6 місяців тому +4

    Another way to solve this:
    Let, An= 2log2+3log3+...+nlogn
    and, Bn= n²logn
    Then, ∆A=An-An-1=nlogn
    ∆B=Bn-Bn-1=n²logn-(n-1)²log(n-1) ~(2n-1)logn
    ∆A/∆B =1/2

    • @mystik4957
      @mystik4957 6 місяців тому

      thats so good bruh wtf. This is basically kind of like l'hospital for discrete sets of data

    • @KALAMKAAR_Official
      @KALAMKAAR_Official 6 місяців тому +1

      But in this solution how can you say lim n-- inf n² ln(1+1/n) is zero ?
      Edit got it ln(1+x) = x se ye n likhha fir Inf/inf ho rha tha to continuous L hopital use kar liya

    • @harshuldesai8901
      @harshuldesai8901 6 місяців тому +4

      @@mystik4957 Stolz-Cesaro theorem. It's a test for series convergence and it's basically L'H for series. Basically says that lim_{n->infty} (a_n - a_{n-1})/(b_n - b_{n-1}) = lim_{n->infty} a_n/b_n where b_n is a strictly increasing function of n.

  • @shivanshnigam4015
    @shivanshnigam4015 6 місяців тому +2

    Sir I turned the numerator in to a definite integral but with some ln(n) terms remaining so just wrote the definite integral as some constant then used LHopital and got 1/2 as the ans

  • @piyushraj760
    @piyushraj760 6 місяців тому +1

    stolz cesaro is also a good approach sir

  • @divyakumar8147
    @divyakumar8147 6 місяців тому +1

    thanks sir

  • @edu_in_iitg
    @edu_in_iitg 3 місяці тому +1

    Handwriting dekhar ulti aa gayi re bhaiya 😅 anyways gr8 soln

  • @Your_Study_Buddy_SD
    @Your_Study_Buddy_SD 6 місяців тому +12

    This question seemed to be easy at first look but after a couple of calculations , realization strikes that oh boy this will take a twist.
    This is a wonderful question.🤌👌