Normalization & Standardization

Поділитися
Вставка
  • Опубліковано 8 лют 2025
  • Apart from missing or outlier treatment, Dimensionality reduction, one-hot encoding, Data Transformation is an important part of Data pre-processing stage. If done effectively, this leads to improved model performance.
    There are many such techniques like - Log or power transformation, Winsorization or clipping, Unit Vector scaling, etc. Each of them have mathematical basis which makes it more popular in one area than other.
    This video talks about two popular techniques of Data Transformation - Normalization & Standardization. Both of them can easily be implemented using popular tools like Python, R, etc.
    For similar topics, visit - www.datarlabs....

КОМЕНТАРІ • 12

  • @Nazeerul_Hazard
    @Nazeerul_Hazard 3 роки тому +2

    Very clear explanation. Thank you for this Anurag

  • @dilinijayasinghe8134
    @dilinijayasinghe8134 11 місяців тому +1

    very good explanation. Thank you very much !!! I really wanted to understand these concepts.

  • @raghav_birla
    @raghav_birla 2 роки тому

    Simplest explanation on UA-cam

  • @dev0_018
    @dev0_018 Рік тому +1

    well explained, thanks 👍

  • @darkredrose7683
    @darkredrose7683 2 місяці тому

    Would it make sense to do a kruskal-wallis significance test for scaled indices that have been scaled 0-1 with min-max? Thank you ❤ (for microbial ecology study)

  • @freddyalyaqout6061
    @freddyalyaqout6061 10 місяців тому

    This is Great!! Thank YOU !! ^.^

  • @libyannbaby3461
    @libyannbaby3461 3 роки тому

    Great explanation
    Please upload more videos on.machine learning topics

  • @debjanisarkar9136
    @debjanisarkar9136 Рік тому

    Great video Sir, can you please tell how to do the same in SPSS instead of Python. Regards

  • @MohammadAli-cr9yi
    @MohammadAli-cr9yi Рік тому

    what is the benefit to scale down values between 0 to 1, can you please elaborate?

  • @rodgerdodger88
    @rodgerdodger88 Рік тому

    Where can I learn about the difference of (percent of total) and normalization. I find that I like my data to not stretch all the way to 0 or 1?