Complex Analysis: Integral of xsin(x)/(x^2+1) using Contour Integration

Поділитися
Вставка
  • Опубліковано 6 лис 2024

КОМЕНТАРІ • 45

  • @ozzyfromspace
    @ozzyfromspace 4 роки тому +5

    Complex analysis is such an amazing thing! I’m watching all your videos to get exposure to the main ideas, so I can link the theory to practice. Thank you for doing this, I’m feeling better about this stuff now, less intimidated by it

  • @gaaraofddarkness
    @gaaraofddarkness 3 роки тому +2

    Such a complex thing explained simply. Thanks mate

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 роки тому

    Thanks a lot dear *QN³*
    Now I'm so interesting about the Laplace one.

  • @HuntBobo
    @HuntBobo 2 роки тому +1

    Great videos. Didn’t you drop the I you brought out front around 10 minutes?

  • @akmarzhanabilassan2098
    @akmarzhanabilassan2098 4 роки тому +1

    Very good explanation.This helped a lot. Thank you!

  • @Kzey1
    @Kzey1 2 роки тому +6

    Hi, I don't understand why do you replace sin(z) by e^iz in the begining ? Because sin(z)=(e^iz-e^-iz)/2i ??? I know it's correct but I don't understand :)

    • @Kzey1
      @Kzey1 2 роки тому

      Ahh okey I just realized that you build a function which is different about the real fonction, but if I use my method why it's not good ?

    • @Kzey1
      @Kzey1 2 роки тому +1

      Sorry for my english, it isn't my native language

    • @Kzey1
      @Kzey1 2 роки тому

      Because if I use my method, I will have a expression with sinh(1) and his coefficient because sin(iz)=isinh(z) when I pass the limit by z=i

    • @qncubed3
      @qncubed3  2 роки тому +3

      sin(z) doesn't vanish in the limit in the upper half plane while e^iz does. We want this property so the integral over Gamma goes to 0.

    • @Nicolas-zk7vm
      @Nicolas-zk7vm 2 роки тому

      @@qncubed3 okey thanks you :)

  • @lorenz3909
    @lorenz3909 2 роки тому +1

    How do we explain after all why can we guarantee the existance of the integral (and so its equality to Principal Value and limR->oo of the integral in [-R,R])? Usually, we proove that f is bounded by a riemann integrable function (which is more obvious to show) and so we have the existance of f integral ... but I can't seem to find a riemann integrable bound for this one, any ideas????

  • @KostasGiotis
    @KostasGiotis 3 роки тому +5

    Hello sir, and thank you for this video.
    I wanted to try solving this by writing sin(z) as (e^iz - e^-iz)/2i and then calculating the residue of this new f(z) at z=i which turns out to be Res(f(z), z=i) = (i/4)*(e - 1/e).
    Then I = 2πi*Res(f) = 2πi*(i/4)*(e - 1/e) = -(π/2)*(e - 1/e) which is not the same as your answer!
    Could you tell me where the mistake is?

    • @richasha670
      @richasha670 2 роки тому +1

      I really have the same curiosity and don't know why D:

    • @qncubed3
      @qncubed3  2 роки тому

      That function doesn't decay for large modulus of z, hence the integral over the upper arc will not vanish

    • @richasha670
      @richasha670 2 роки тому

      @@qncubed3Thank you!

  • @LatifaEssa
    @LatifaEssa 7 місяців тому

    Pourquoi on ne peut pas trouver des vidéos comme ça en Francais 😢
    Merci beaucoup tu es incroyable

  • @geraldnavida183
    @geraldnavida183 11 місяців тому

    Hello, thanks for this video. I just have one question. If we evaluate the limit of an integral, we can only interchange the order of limit and integration if the integrand is a monotonically increasing function and measurable according to monotone convergence theorem, right? The integrand e^-Rsint is measurable but it is a decreasing function as R becomes larger. Do you think you can apply monotone convergence theorem here? Another theorem I think that can be invoked is Lebesgue Dominated Convergence Theorem if MCT won't work.

  • @krystellecruz8090
    @krystellecruz8090 5 років тому +1

    keep up the good work!!!

  • @HarshKumar-kx9qy
    @HarshKumar-kx9qy 3 роки тому +2

    sir, is this integral twice that of integral done from 0 to infinity?

    • @qncubed3
      @qncubed3  3 роки тому +3

      Yes, the integrand is an even function

  • @alyssazhou8331
    @alyssazhou8331 5 років тому +1

    That is really helpful!!!!! Thank you!

  • @jjzhu77
    @jjzhu77 4 роки тому +1

    why do you need to do e^iz and take imaginary instead of doing sin(z) directly

    • @qncubed3
      @qncubed3  4 роки тому

      It's easier when calculating the residues and integral over Gamma as you only need to deal with one exponential, rather than 2 if you use the complex definition of sine.

  • @dewman7477
    @dewman7477 4 роки тому

    How do you generally choose your contour in a given integral? If I choose a different contour, will I get another answer? What's the thought process? It's the hardest part

    • @qncubed3
      @qncubed3  4 роки тому

      A lot of practice and examples!

    • @maalikserebryakov
      @maalikserebryakov Рік тому

      @@qncubed3thoughtless answer.

    • @rabomeister
      @rabomeister Рік тому +1

      @@maalikserebryakov then give an answer with thoughts dude.

    • @JamesMartin-vn5dq
      @JamesMartin-vn5dq 11 місяців тому

      @@maalikserebryakov he aint wrong though

    • @JamesMartin-vn5dq
      @JamesMartin-vn5dq 11 місяців тому

      you can choose a different contour, but it may be harder to parameterise (the semi circle is generally the easiest, but you could choose, for example, a box contour). but if your newly chosen contour encloses different residues or more poles of your f(z) you will get a different answer

  • @mounyadjellouli7355
    @mounyadjellouli7355 4 роки тому

    I like your vedio thank you ..

  • @satyamgupta-qc9mz
    @satyamgupta-qc9mz 4 роки тому +2

    Explain sin(x)=e^(iz) ?how

    • @qncubed3
      @qncubed3  4 роки тому +2

      They are not equal, however when we construct our function we use e^(iz) as it is easier to deal with.

    • @satyamgupta-qc9mz
      @satyamgupta-qc9mz 4 роки тому

      @@qncubed3 👍👍

    • @kunalburdak8964
      @kunalburdak8964 3 роки тому +1

      Same…i am also confused with it😩

    • @maalikserebryakov
      @maalikserebryakov Рік тому

      @@kunalburdak8964converting a real integrand into a complex integrand is a complicated on its own

    • @JamesMartin-vn5dq
      @JamesMartin-vn5dq 11 місяців тому

      because the real part of the function f(x) disappears when we evaluate, because it is now an odd integrand (even function/odd function = odd function) we dont have to worry about it

  • @heattransfer8003
    @heattransfer8003 Рік тому

    so we replaced sin(x) by e^iz. Can I also replace cos(x) by e^iz too ?

    • @JamesMartin-vn5dq
      @JamesMartin-vn5dq 11 місяців тому

      i believe so, just make sure you solve for the real part when you evaluate the integral

  • @vahiback5676
    @vahiback5676 3 роки тому

    Sir what is answer if the denominator is(x^2-r^2).
    Can you help me sir. If r is real

    • @qncubed3
      @qncubed3  3 роки тому

      In general the integral will diverge as you will get isolated singularities at x = +/- r.

  • @robinpavithrangirijajijo
    @robinpavithrangirijajijo 3 роки тому

    Thankyou love you😊🥰

  • @rounaksen1357
    @rounaksen1357 4 роки тому

    thank you sir

  • @mahmudaakterfahima999
    @mahmudaakterfahima999 4 роки тому +1

    good