Law Of Cosines II (visual proof)

Поділитися
Вставка
  • Опубліковано 29 гру 2024

КОМЕНТАРІ • 65

  •  Рік тому +43

    Nice little visual proof, but I think that the "algebraic manipulation" that change a sin into a cos would have been worth explaining. In fact, it feels like the heavy lifting of this proof is in the algebraic manipulation.

    • @MathVisualProofs
      @MathVisualProofs  Рік тому +19

      The sine doesn’t become a cosine. Sine squared plus cosine squared results in 1. The only algebra is the square of a difference.

    •  Рік тому +4

      @@MathVisualProofs I see. For me though, Sin square + Cos square equal 1 is more a Trig identity then just algebraic manipulation.
      Nonetheless, very nice visual proof. 🙂

    • @MathVisualProofs
      @MathVisualProofs  Рік тому +6

      @ Thanks! I do say "algebraic rules along with the pythagorean trigonometric identity" to indicate what needs to be done - so I agree that is more than algebraic manipulation.

  • @dabullah
    @dabullah Рік тому +17

    Keep up these amazing videos!!

    • @MathVisualProofs
      @MathVisualProofs  Рік тому +5

      I’ll see what I can do. I’m over two years in and at some point I’ll run out of visual proofs I find interesting :)

  • @RogatkaWR
    @RogatkaWR Рік тому +12

    I love binging your videos! Keep it up!

  • @darthTwin6
    @darthTwin6 4 місяці тому +1

    Beautiful proof. It really makes the whole thing so intuitive

  • @michaelmurdoch
    @michaelmurdoch 4 місяці тому +1

    Great video man! Loving this channel!

  • @woopnull9103
    @woopnull9103 Рік тому +4

    2:08 why does b*sin(pi-theta) = b*sin(theta) ?

    • @MathVisualProofs
      @MathVisualProofs  Рік тому

      This is a fact about the sine function, which measures the y-coordinate on the unit circle after rotating angle theta. So if you instead rotate pi-theta you have the same y-coordinate.

    • @TheEGod.
      @TheEGod. Рік тому

      This was confusing since I thought of it like theta minus pi, and not like pi minus theta.

    • @MathVisualProofs
      @MathVisualProofs  Рік тому

      @@TheEGod. theta-pi doesn’t give you the right identity.

    • @TheEGod.
      @TheEGod. Рік тому

      @@MathVisualProofs Yeah thats why I said I was so confused. Since I was thinking of something inccorect.

    • @MathVisualProofs
      @MathVisualProofs  Рік тому

      @@TheEGod. Oh! I see. :)

  • @ekoi1995
    @ekoi1995 2 дні тому

    We are given the equation:
    c^2 = (a - b * cos(t))^2 + (b * sin(t))^2
    We aim to show that this equation simplifies to:
    a^2 + b^2 = c^2 + 2 * a * b * cos(t)
    Expanding the terms
    First, expand the terms on the right-hand side of the equation:
    (a - b * cos(t))^2 = a^2 - 2 * a * b * cos(t) + b^2 * cos^2(t)
    (b * sin(t))^2 = b^2 * sin^2(t)
    Now substitute these expanded forms into the original equation:
    c^2 = (a^2 - 2 * a * b * cos(t) + b^2 * cos^2(t)) + b^2 * sin^2(t)
    Simplifying the equation
    Combine the terms:
    c^2 = a^2 - 2 * a * b * cos(t) + b^2 * (cos^2(t) + sin^2(t))
    Recall the Pythagorean identity:
    cos^2(t) + sin^2(t) = 1
    So, substitute this identity into the equation:
    c^2 = a^2 - 2 * a * b * cos(t) + b^2
    Rearranging the terms
    Now, let's rewrite the equation to match the desired form. Rearranging the terms:
    c^2 = a^2 + b^2 - 2 * a * b * cos(t)
    Finally, add 2 * a * b * cos(t) to both sides to get:
    a^2 + b^2 = c^2 + 2 * a * b * cos(t)
    Conclusion
    Thus, we have shown that:
    c^2 = (a - b * cos(t))^2 + (b * sin(t))^2
    leads to the equation:
    a^2 + b^2 = c^2 + 2 * a * b * cos(t)

  • @techiesithastobetechies.8531
    @techiesithastobetechies.8531 Рік тому +1

    Now this becomes hard to forget!

  • @sdspivey
    @sdspivey Рік тому +6

    You should have pointed out the sin²+cos²=1. Many viewers may not know trig identities.

    • @MathVisualProofs
      @MathVisualProofs  Рік тому

      I do mention you need the "pythagorean trigonometric identity" so that people can search that if they aren't aware.

  • @luukaskyronlahti5205
    @luukaskyronlahti5205 Рік тому +4

    This is awesome

  • @Ibrahim_Ezzeddine.
    @Ibrahim_Ezzeddine. Рік тому +1

    In the obtuse example was side a for all the base or soecific part of it ?

  • @Ibrahim_Ezzeddine.
    @Ibrahim_Ezzeddine. Рік тому +1

    And it is weird because in your second you added a right triangle and proved it like that i mean it does not make sense because you are solving for a different triangle now not an obtuse triangle so how both are related?

  • @rttt284
    @rttt284 Рік тому +1

    I really liked your work and explanation. Can you help me with the name of the program you are using for the explanation

  • @StratosFair
    @StratosFair Рік тому +2

    Beautiful. What do you mean when you say this is equivalent to Pythogarean theorem though ? If we didn't have it in the first place we wouldn't be able to prove the law of cosines, no ?

    • @MathVisualProofs
      @MathVisualProofs  Рік тому

      You can prove the law of cosines without the Pythagorean theorem.

  • @Harshit-b2y
    @Harshit-b2y 2 місяці тому

    I have doubt that if we have values of trigonometric ratios grater 90⁰, then why we can't use them directly?

  • @abhayphotos4398
    @abhayphotos4398 Рік тому +2

    Amazing❤

  • @VictorHarrys
    @VictorHarrys 8 місяців тому +2

    It’s not a fully “visual proof” since you included “algebraic manipulation”.

  • @WahranRai
    @WahranRai Рік тому +1

    You must cote Al Kashi for this theorem as you cote Pythagore !

  • @GourangaPL
    @GourangaPL Рік тому +1

    why is Pitagorean Theorem called by the mathematician's name and i almost never see this one called Al-Kashi's law of cosines?

    • @MathVisualProofs
      @MathVisualProofs  Рік тому +1

      Yes, PT should be called "Right triangle theorem". Unfortunately it is how it is.

  • @gerardsagliocca6292
    @gerardsagliocca6292 Рік тому +3

    Kind of speeded through. If you slow down a bit and added a few more algebraic steps, then the video would be great.

  • @electrozito9718
    @electrozito9718 Рік тому +5

    It is not called the law of cosines , it is called Alkashi's theory originally made by one of the greatest arabic mathematicians. I think we should give the honor to his name and not change his theory's name.

  • @monoman4083
    @monoman4083 Рік тому +2

    very good....

  • @HolloMatlala1
    @HolloMatlala1 9 місяців тому

    One day the importance and need of VR and Augmented Reality will be realized in Schools and Universities

  • @yolomc2
    @yolomc2 Місяць тому +1

    2:09 b*sin(pi-theta) = bsin(theta)
    This makes absolutely no sense

    • @MathVisualProofs
      @MathVisualProofs  Місяць тому +1

      Do you know what the sine function does? It measures the y-coordinate on unit circle. If you rotate theta degrees you will be at the same y-coordinate as if your rotate theta degrees back from a pi rotation.

    • @yolomc2
      @yolomc2 Місяць тому +1

      @@MathVisualProofs Ok i get it now, I think i got confused when trying to picture the obtuse triangle inside a circle and the epicentre (theta) not being in the middle of the imaginary circle 😅 👍

  • @MuhammadAnas_Official
    @MuhammadAnas_Official 6 місяців тому +1

    Love it❤❤❤

  • @수하긴
    @수하긴 Рік тому +2

    우와..........

  • @JakirHossain-ik5rp
    @JakirHossain-ik5rp Рік тому

    Software name please?

  • @asparkdeity8717
    @asparkdeity8717 Рік тому

    ❤️

  • @rhandhom1
    @rhandhom1 Рік тому

    I understand some of these words.

    • @MathVisualProofs
      @MathVisualProofs  Рік тому +1

      Start with those and branch out to the others 👍😀

  • @loooooooon3666
    @loooooooon3666 Рік тому

    I still don't understand why it's Pi minus the angle alpha

    • @MathVisualProofs
      @MathVisualProofs  Рік тому

      That is the supplementary angle. Two angles that create a straight line must add to 180 degrees or pi rads

  • @sunnoah6502
    @sunnoah6502 Рік тому

    Dear Sir,
    I am truly impressed by your videos; they are truly remarkable. I am interested in sharing these videos on the "Chinese equivalent of UA-cam." I plan to include a link to your videos and want to emphasize that there will be no intention to generate any profit from them. My primary goal is to make your content accessible to a wider audience in China, especially those who do not have access to UA-cam.
    Thank you for your consideration.

  • @the69paradise68
    @the69paradise68 Рік тому +2

    انها نظرية الكاشي....العالم الرياضي .... المسلم الفارسي.... من كاشان...... وهي تعميم نظرية فيتاغورث.... ..... طريقة ممتازة...... لعرض البرهان.....نحن نتعلم...... من المهد...... الى اللحد

  • @richarda6813
    @richarda6813 Рік тому +2

    A little too rushed

  • @Xeroxias
    @Xeroxias Рік тому +1

    It's a nice video, but calling it a visual proof seems like a stretch.

    • @MathVisualProofs
      @MathVisualProofs  Рік тому

      I mean, it is a published "proof without words." So in my mind, it's a pretty good visual proof. I added some commentary, but I think it stands alone too.