A Nice Diophantine Equation in Number Theory | You Should Learn This Theorem | Math Olympiad

Поділитися
Вставка
  • Опубліковано 11 лис 2024

КОМЕНТАРІ • 46

  • @devondevon4366
    @devondevon4366 Рік тому +11

    22y + 57x =400
    ~ this will use for congruent to
    0y + 13x `~ 4 ( mod 22)
    13 x ~26 (mod 22)
    x ~ 2 (mod 22)
    x = 2 + 22k equation A
    Since 22y + 57x =400 ,then
    22y + 57 ( 2+22k) =400
    22y + 114 + (57)(22k) =400
    22y = 286 - (57)(22k)
    y = 13- 57k equation B
    when k= 1 , x = 2+22 = 24 and
    when k=1 , y = 13-57 = -44
    So one solution is (24 - 44)
    let's plug in these values in the original equation, 22y + 57k=400
    22(-44) + 57(24) = 400
    -968 + 1368 =400
    400 = 400
    Trying other values when k=2
    x= 2+ 44 = 46 and
    y= 13-114 = - 101
    let's plug in 46 and - 101 into the original equation
    (22)(-101) + 57(46 = 400
    -2,222 + 2622 = 400
    400 = 400
    So, the solution for the linear diophantine equation 57x + 22y =400
    is x= 2+22k, and y =13-57k

    • @drpkmath12345
      @drpkmath12345  Рік тому +3

      Nice work! Thanks for sharing your work Devon👍👍👍

  • @nemwatikaransingh7664
    @nemwatikaransingh7664 17 днів тому +2

    5x=400-143
    =257/5
    257+143/5=400

  • @storybyfaahdira1060
    @storybyfaahdira1060 22 дні тому +1

    Great, thank you Sir

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 2 місяці тому

    mod(57x,2)=0 --> x is even
    x=2k where k is positive integer
    Thus the equation may written as
    57×2k+22y=400 --> 57k+11y=200
    As the last digit of RHS is 0 then sum of last digit of 57k and 11y must be 0. Note that k

  • @MrGLA-zs8xt
    @MrGLA-zs8xt 2 роки тому +4

    Ingenious method. thank you for your dazzling explanation sir

  • @sarahsiddiqui361
    @sarahsiddiqui361 8 місяців тому +1

    Sir here how did you wrote it, explanation please 4:59

  • @Crazy_mathematics
    @Crazy_mathematics 2 роки тому +1

    A= { a | 0 < a < 1 }
    Therefore n(A) = ∞

  • @Mathstoon
    @Mathstoon 2 роки тому +4

    Nice technique!

    • @drpkmath12345
      @drpkmath12345  2 роки тому

      Thank you for your comment mate👍👍👍

    • @Mathstoon
      @Mathstoon 2 роки тому

      @@drpkmath12345 You are most welcome!

  • @pythona-z7052
    @pythona-z7052 Рік тому +3

    X=2-22k
    Y=13+57k

  • @domedebali632
    @domedebali632 2 роки тому +3

    Very nice sir. Muchas gracias

  • @Bluebirdgirl
    @Bluebirdgirl 8 місяців тому +2

    Heyy sir i am From India 🇮🇳... (Kerala)
    Nice class🎉🙌

    • @drpkmath12345
      @drpkmath12345  8 місяців тому

      Hello my friend! Come to my new channel! Link is in the comminity tab👍👍👍

    • @Bluebirdgirl
      @Bluebirdgirl 8 місяців тому

      @@drpkmath12345 hey how are u sir

    • @drpkmath12345
      @drpkmath12345  8 місяців тому

      @@Bluebirdgirl Hey how are you? Did you subscribe to my new channel?

  • @iiwacky6480
    @iiwacky6480 Рік тому +3

    i found x=22k+12 and y=(-627k-142)/11 using modular arithmetic

    • @drpkmath12345
      @drpkmath12345  Рік тому

      Nice work! Thanks for sharing my friend👍👍👍

  • @swetabanerjee5213
    @swetabanerjee5213 6 місяців тому +2

    How to find value of n?

    • @md.saminhossain5803
      @md.saminhossain5803 4 місяці тому

      n could be any of the integers.
      That's what the equations tell us at the end, that is,
      x = 57 ( -2000 + 22n ) ----- (1)
      y = 22 ( 5200 - 57n) ----- (2)
      where n belongs to the set of integers, Z = {...,-2, -1, 0, 1, 2,...}
      That's how we can get infinite pairs of (x,y) to solve this linear diophantine equation.
      Hope that helps.

  • @satyapalsingh4429
    @satyapalsingh4429 4 місяці тому +1

    x=2+22k ,k=0,1,2,3,……..,y=13-57k ,k=0,1,2,3,…………..,(x,y)=(2,13),(24,-44),(46,-101),……………Answer

  • @clasher9667
    @clasher9667 Рік тому +1

    Thank you sir

    • @drpkmath12345
      @drpkmath12345  Рік тому

      Come to my new channel my friend👍👍👍

  • @richardl6751
    @richardl6751 5 місяців тому

    Did you say x and y must be positive integers?

  • @barryjackson405
    @barryjackson405 2 роки тому +2

    X=2,y=13

  • @robbel3819
    @robbel3819 11 місяців тому +1

    What is "n"?

  • @Min-cv7nt
    @Min-cv7nt 2 роки тому +1

    I am the first today

  • @arunachalamhariharan9082
    @arunachalamhariharan9082 Рік тому +1

    This method is just too much use of higher mathematics .
    I use only school level ( 8th class level ) mathematics to solve such simple problems .
    The core of my thinking is
    400 = ( 7 × 57 ) + 1
    &
    ( 57 × n ) + 1 = 22 × p
    Finding n and p is a school level thinking .
    My request
    PLEASE DO NOT COMPLICATE SIMPLE SCHOOL LEVEL THINKING .
    THIS WILL KILL INVENTIVE THINKING .
    Thanks .

    • @drpkmath12345
      @drpkmath12345  Рік тому +7

      Thats why you failed to find general solutions for this question. Nothing really complicated and Ive given out a simple formula you can use to come up with general solutions for linear diophantine equation. Not every math can be done with 8th grade level math bro. If you are not enough, right attitude is to LEARN and not complain anything as it is from your lack of understanding. Inventive thinking is something people like you should not be mentioning or just be quiet