Math Olympiad Exam | Lambert W Function

Поділитися
Вставка
  • Опубліковано 26 гру 2024

КОМЕНТАРІ • 654

  • @omarkandou6794
    @omarkandou6794 Рік тому +590

    We can just notice that 3power(3)+3=30. Since the function x------3power(x)+x is increasing. Then 3 is the unique solution.

  • @mikeinjapan2004
    @mikeinjapan2004 Рік тому +73

    Only mathematicians appreciate this elegant solution! Nice introduction to Lambert function.

    • @Math_Minds
      @Math_Minds  Рік тому +3

      Thank you.

    • @DandoPorsaco-ho1zs
      @DandoPorsaco-ho1zs 9 місяців тому

      Which shows that you are NOT a mathematician.
      This method works if you can split 30 into two numbers x and y, such that x + y = 30 and 3^x = y (ie. 3 +27 = 30 and 3^x = 27), where x must be the solution you are trying to calculate. In other words, you need the solution of the problem in order to split 30 and use this complicated method… to find that number you just used.
      For example, if you try to solve 3^x + x = 40, you just need to split in your head 40 into 3.279887… and 36.72011..., both with infinite decimals, and since 3.279887… + 36.72011... = 40 and 3^3.279887… = 36.72011..., you can use this method to find the solution, which is 3.279887…, the number you used to find that very number.
      Brilliant method!

  • @tungyeeso3637
    @tungyeeso3637 Рік тому +43

    This is my approach: Plot a graph using y=3^x and y=30-x, the solution can be found where the curves meet. Simple and easy.

    • @vadim64841
      @vadim64841 10 місяців тому +6

      your eyes are not a proof, can use them for making a guess, but then need to plug in and verify

    • @wellington2779
      @wellington2779 9 місяців тому +6

      3^x + x = 30
      3^x + x = 3^3 + 3
      X=3

    • @DonatoGreco
      @DonatoGreco 7 місяців тому +1

      ... but you may be asked to solve it analytically

    • @baselinesweb
      @baselinesweb 4 місяці тому

      @@wellington2779 Well this is useless. What is wrong with you?

    • @advaitgawai5648
      @advaitgawai5648 4 місяці тому

      ​@@wellington2779 this is not a proof

  • @Tempest32_
    @Tempest32_ Рік тому +22

    Everyone is acting like what he did in this video uses unnecessary steps, but the goal of this video is not just to teach you how to solve 3^x+x=30, it is to teach you how to use the Lambert function to solve for x in similar situations.

    • @Math_Minds
      @Math_Minds  Рік тому +1

      Exactly... You are right.

    • @brettbuck7362
      @brettbuck7362 4 місяці тому +1

      @@Math_Minds So, why choose an example that can easily be solved by inspection? Besides, I had a dual major in math and physics, and have worked in an vocation that uses various math functions for 40+ years - I had never heard of the "lambert W function" and never had a need to use it to solve anything. It is usually very easy to solve by inspection if the result is going to be an integer, and if not, you will have to do a numerical "solution" anyway, so might as well solve it with iteration, which can get you to about 3 significant figures in maybe 3-4 passes, perfectly practical to solve on paper and faster than the solution shown here.

    • @fernandoc4741
      @fernandoc4741 Місяць тому

      ​@@brettbuck7362Yeah, the very basic of numerical analysys is plotting and interpolating. If you know its is integer and less than m and greater than n, you wont need even m-n steps to check, just logarithm of it and checking if it is less or more. A dumb computer will halve the possibilities to reduce worst and avarage time complexity, but human intuition will give an better avarage time complexity.

  • @khundeejai7945
    @khundeejai7945 Рік тому +158

    Moving x to the right side, we get 3^x = -x+30. The exponential function is increasing while the linear function is decreasing and there is only one intersection. It's obvious that x=3 is the solution.

  • @TheCktulhu
    @TheCktulhu Рік тому +5

    3^x + x = 3^3 + 3
    x=3
    30 const ; 3^x + x is increasing func -> hence 1 intersection and 1 solution
    selection method 3 root.

  • @김태현-x4x
    @김태현-x4x Рік тому +24

    I hope my car navigation NEVER gives me the directions like this

  • @luftmaxsa
    @luftmaxsa Рік тому +49

    In Russia I haven't even been told about the Lambert W Function. Instead I've been taught multiple times about Gauss functions, and many other fundamentals of mathematical framework in many aspects (calculus, vector calculus, complex analysis, tensor analysis)... but W-function is what I've never heard of before...

    • @jamebond4832
      @jamebond4832 Рік тому +2

      the same in Vietnam and many other countries =]]

    • @Ronin_RoniN
      @Ronin_RoniN Рік тому

      По факту)

    • @Ronin_RoniN
      @Ronin_RoniN Рік тому

      По факту)

    • @polaris1985
      @polaris1985 Рік тому +4

      Same in India and I'm a post graduate

    • @Kmj-e4z
      @Kmj-e4z Рік тому +1

      I am korean and korean same ..I had to learn from youtube

  • @Packerfan130
    @Packerfan130 Рік тому +18

    Define f:R -> R by f(x) = 3^x + x - 30.
    Note that f is differentiable (and thus, continuous) on (-inf, inf) and f(3) = 0.
    Note that f '(x) = 3^x ln 3 + 1 > 0 on (-inf, inf) since 3^x > 0 on (-inf, inf).
    Suppose by contradiction there exists a in R such that f(a) = 0 and a != 3. If a < 3, then by the Mean Value Theorem there exists c in (a, 3) such that f '(c) = [f(3) - f(a)] / [3 - a] = 0, but this is a contradiction since f '(x) > 0 on (-inf, inf). We can use the MVT to show that a > 3 also leads to a contradiction. Therefore, f has one root at x = 3.

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 Рік тому +6

    It is simpler to solve the problem using modular algebra.
    Take modulo 3:
    mod(3^x,3)+mod(x,3)=mod(30,3)
    [mod(3,3)]^x+mod(x,3)=0
    0+mod(x,3)=0 --> mod(x,3)=0
    It means that x=3k where k is any integer. Plugging it back to the given equation:
    3^(3k)+3k=30
    Divide by 3: 3^(3k-1)+k=10
    =3²+1
    Comparing both sides we get k=1
    Thus x=3. As check:
    LHS=3^x+x=3³+3
    =27+3
    =30 equals to RHS

    • @voicutudor7331
      @voicutudor7331 Рік тому +3

      this only works if x in natural

    • @nasrullahhusnan2289
      @nasrullahhusnan2289 Рік тому +2

      @@voicutudor7331:
      Taking modulo 3:
      mod[(3^x+x),3]=mod(30,3)
      As mod[(a+b),k]=mod(a,k)+mod(b,k) and 30 is divisible by 3 then
      mod(3^x,3)+mod(x,3)=0
      As mod(a^n,k)=[mod(a,k)]^n thus
      [mod(3,3)]^x=mod(x,3)
      As mod(3,3)=0, [mod(3,3)]^x=0^x and 0^x=0 for any x, not necessarily x is natural number, giving mod(x,3)=0.

    • @voicutudor7331
      @voicutudor7331 Рік тому +2

      @@nasrullahhusnan2289 divisibility and mods are only well defined over integers

    • @nasrullahhusnan2289
      @nasrullahhusnan2289 Рік тому +1

      @@voicutudor7331:
      I want to know your comment to the following statements:
      3^x+x=30
      Take modulo 3 to yield
      mod[(3^x+x),3]=mod(3^x,3)+mod(x,3)
      =[mod(3,3)]^x+mod(x,3)
      =0^x+mod(x,3)
      =mod(x,3) as 0^x
      As mod(30,3)=0 then mod(x,3)=0
      Is 0^x=0 true only for x a natural number?
      You'd better consult to someone who you consider good mathematecian.

    • @voicutudor7331
      @voicutudor7331 Рік тому

      @@nasrullahhusnan2289 bro your math is fucking trash 3^x mod 3 if x is not a natural number doesn t exist, take 3^1.5 and see wtf is going on. stop with this 5th grade approach

  • @DandoPorsaco-ho1zs
    @DandoPorsaco-ho1zs 9 місяців тому

    This method works if you can split 30 into two numbers x and y, such that x + y = 30 and 3^x = y (ie. 3 +27 = 30 and 3^x = 27), where x must be the solution you are trying to calculate. In other words, you need the solution of the problem in order to split 30 and use this complicated method… to find that number you just used.
    For example, if you try to solve 3^x + x = 40, you just need to split in your head 40 into 3.279887… and 36.72011..., both with infinite decimals, and since 3.279887… + 36.72011... = 40 and 3^3.279887… = 36.72011..., you can use this method to find the solution, which is 3.279887…, the number you used to find that very number.
    Brilliant method!

  • @thessalonician
    @thessalonician Рік тому +5

    Because of the sum (30), x should be either 2 or 3. As 3^2+2=11 and 3^3+3=30, then by inspection x = 3.. It won't take more than 1' to get the solution.
    You can get there easily just by trial..

  • @Jay_Richardson
    @Jay_Richardson Рік тому +2

    3 to the power of 3 = 27 + 3. Pretty easy X = 3. Dont need a big ass page explaining it all re writing it multiple times. Just work through to the powers 3x0, 3x3, 3x3x3 = Remainder left 3.

  • @BernhardParodi
    @BernhardParodi 10 місяців тому

    As a generalization, the method presented always works if in the equation a^x + x = b one has b = a^a + a, with a solution x = a. Try it out with some numbers or repeat the derivation as in the video.

  • @marekzalinski390
    @marekzalinski390 10 місяців тому +1

    No need completely to introduce Lambert's function. If (30-x) · 3^(30-x) = 3^30 from a simple algebraical transformation, as shown on the screen, so (30-x) · 3^(30-x) = 3^3 · 3^27, so (30-x) · 3^(30-x) = 27 · 3^27, so (30-x) = 27, so x = 3, end. The function is very interesting and useful (see even Wikipedia for examples), but not here.

  • @HassanAli-sn3ch
    @HassanAli-sn3ch 10 місяців тому +1

    X=3
    Bc what's the number that power the number 3 and the addition number
    It's coming by 3³ and this equal to 27 but
    27+3 = 30
    So 3x +x =30 is
    3³ + 3 =30
    So x=3

  • @manojkantsamal4945
    @manojkantsamal4945 Рік тому +1

    3 to the power x +3=30
    3 to the power x +3=27+3
    3 to the power x= 27+3-3
    3 to the power x = 27
    3 to the power x = 3 to the power 3
    Then X= 3......

  • @gelbkehlchen
    @gelbkehlchen Рік тому +16

    Solution:
    3^x+x = 30 = 3^3+3 |the same operations are done with x on the left side of the equation as with 3 on the right side of the equation, therefore x = 3.

    • @kientrucnguyen3095
      @kientrucnguyen3095 Рік тому +1

      Cách này tương tự mà hay hơn, song đều phải chứng minh rằng đây là nghiệm duy nhất mới chặt chẽ

    • @errornotfound_1972
      @errornotfound_1972 Рік тому

      cách giải này không chặt chẽ. Nếu bài toán với x là 1 số thập phân thì sẽ rất khó để đoán được nghiệm của nó. Thậm chí có những bài toán với rất nhiều nghiệm, do đó suy đoán sẽ bỏ xót đáp án. Cách giải này là không có cơ sở để chứng minh nó tuyệt đối. Điều bạn cần là tìm ra nghiệm của bài toán bằng cách chứng minh nó là đúng một cách chặt chẽ.

    • @gelbkehlchen
      @gelbkehlchen Рік тому

      @@errornotfound_1972 Wie muss man es dann lösen?

    • @errornotfound_1972
      @errornotfound_1972 Рік тому

      ​@@gelbkehlchencó thể dùng đạo hàm, hoặc là áp dụng các công thức toán học khác. Hoặc ít nhất là phương pháp như video. Đó là những phương pháp để chứng minh được nghiệm của bài toán, nó không bỏ xót nghiệm của bài toán. Cách chẩn đoán không thể giải quyết được các nghiệm chặt chẽ, hoặc nếu bài toán đưa ra là số hữu tỉ, chúng ta sẽ khó mà đoán được nghiệm. Và trong toán học là bạn phải chứng minh nó đúng một cách chặt chẽ được công nhận. Toán học không thể sử dụng phương pháp "đoán mò"

    • @gelbkehlchen
      @gelbkehlchen Рік тому

      @@errornotfound_1972 Was sind Derivate?

  • @surfer_guy942
    @surfer_guy942 Рік тому +6

    Someone please explain what the "w" is all about. What is "w" and why did he multiple both sides by it?

    • @yurenchu
      @yurenchu Рік тому +4

      "w" is the so-called Lambert W Function (see the title of this video). He did not multiply by "w", he applied the Lambert W Function to the expression on each side of the equation.
      The Lambert W Function is the inverse of the function f(x) = x*(e^x) . So if y = x*(e^x) , then W(y) = W( x*(e^x) ) = x . [*]
      Note: the Lambert W Function is usually written with a capital letter W, not with a lowercase w .
      [*] Actually, the Lambert W Function is the "principal branch" of the equation x*(e^x) = y ; multiple values of x can lead to the same value of y, but the Lambert W Function W(y) only returns the principal root of the equation.

  • @ahmedgalliard6892
    @ahmedgalliard6892 9 місяців тому

    You can graph the function f(x)= exp(x ln3) and g(x) =x-30 and see where f(x)=g(x)

  • @mariuspopescu284
    @mariuspopescu284 10 місяців тому

    3^x = 30 - x Since 30 - x must be > 0 -> x < 30
    x = 3 verifies the equation. 3^x increases while 30 - x decreases, so 3 is unique solution.

  • @billcook4768
    @billcook4768 Рік тому +9

    Or you just eyeball it and instantly see that the (an?) answer is three. The only tricky part is testing whether there are additional solutions.

    • @QUABLEDISTOCFICKLEPO
      @QUABLEDISTOCFICKLEPO Рік тому +1

      Well, I have to admit that you got me there. I never look for other solutions..

    • @TunaBear64
      @TunaBear64 Рік тому +2

      ​@@QUABLEDISTOCFICKLEPOLuckily, is easy to prove this is an increasing function, therefore any solution would be unique.

  • @danielli9167
    @danielli9167 Рік тому +1

    I went to the rest room to pee, before I could pee, I cleaned up all the house. accidently peed in my pants.

  • @7VlesSiah
    @7VlesSiah Рік тому +1

    since 3^x and x are both increasing functions the function f(x)=3^x+x is in an increasing function. f(0)=10
    for positive x, 3^x+x=30 ln(3^x+x)=ln(30) x*ln(3)*ln(x)=ln(30) x*ln(x)= ln(27) x*ln(x)=3ln(3) x=3

    • @dumitrudraghia5289
      @dumitrudraghia5289 3 місяці тому

      ???????

    • @7VlesSiah
      @7VlesSiah 3 місяці тому

      @@dumitrudraghia5289 Math without guessing. LOG rules FTW.

  • @nagarajahshiremagalore226
    @nagarajahshiremagalore226 9 місяців тому +1

    Pl explain the letter w
    You wrote. I did not understand.

  • @christiansmakingmusic777
    @christiansmakingmusic777 7 місяців тому

    Btw x is congruent to zero mod three, so you can rewrite it as 27^x+3x=30, and immediately we see using the canonical homomorphism between Z[3] and Z/3Z, that the new x must be one, and the original must have been 3.

  • @SttNguyenPhuocTrongA
    @SttNguyenPhuocTrongA Рік тому +4

    Giải phương trình :3^x+x=30
    +) Tập xác định:D=R
    +) Phương trình trên tương đương với phương trình sau:
    3^x+x-30=0
    Xét hàm số f(x) =3^x+x-30, x∈R
    =>f'(x) =(3^x)ln3+1>0∀x
    =>f(x) đồng biến trên R
    =>phương trình f(x) =0 có tối đa 1 nghiệm trên tập số thực
    +) Mà f(3) =0
    =>X=3 là 1 nghiệm duy nhất của phương trình f(x) =0
    Kết luận: tập nghiệm của phương trình là S={3}

    • @nguyenhoangminh2574
      @nguyenhoangminh2574 Рік тому +2

      đúng là đạo hàm có thể không là công cụ nhanh nhất nhưng chắc chắn là công cụ mạnh mẽ nhất 😂

  • @かーぼん_1125
    @かーぼん_1125 Рік тому +5

    3が解になって左辺は明らかに単調増加関数だから3しか解になり得ないっていうのが一番楽

  • @Paul-sj5db
    @Paul-sj5db 11 місяців тому

    30 is divisible by 3. Assuming that X is a whole number then 3^X is divisible by 3 which means that X must also be divisible by 3. As 30 is small I tried 3 and it worked.

  • @ГлебВершков-р5и
    @ГлебВершков-р5и Рік тому +6

    я придумал два способа немного легче...
    1 способ: перенести х вправо и нарисовать две функции у=3^х и у=30-х, найти пересечение и всё
    2 способ: снова перенести х и получить: 3^х=30-х, увидеть, что одна функция возрастает, а другая - убывает, следовательно, есть хотя бы одно решение и методом подбора нашёл, что х=3

  • @谁知道-e1w
    @谁知道-e1w Рік тому +1

    解题步骤如下:因为3power(x)+x=30,所以,3power(x)

  • @yurenchu
    @yurenchu Рік тому +4

    At 7:00, how did you decide to break the exponent 30 (of 3^30) into 3+27 ? Isn't that insight actually the same as solving the original equation 3^x + x = 30 on-sight: x = 3 ?
    3^x + x = 30
    I'm looking at the 30 on the righthandside, I want to break that up into two parts, one part that equals 3^x and another part that equals x ; and I immediately see that 27 + 3 will do the trick. No long derivation nor application of Lambert W Function needed!
    How is what you did at 7:00 - 7:21 any different?

    • @vitorrj4211
      @vitorrj4211 Рік тому

      When you guess a solution, you get only one solution. What if you have more (maybe complex) solutions?

    • @bikramdev007
      @bikramdev007 Рік тому +1

      Maybe he is doing this because math doesn't only depends on the guessing. You have to show the proof besides guessing.

    • @yurenchu
      @yurenchu Рік тому +2

      @@bikramdev007 He hasn't answered my question, but as far as I can see, his calculation depends on "guessing" (as you call it) in order to arrive at the (simplified) answer that he eventually got (although granted, he could still have presented a non-simplified answer if he hadn't broken up 30 into 3+27).
      Well, what stops me then from "guessing" (I'd rather call it "using insight" than "guessing", but have it your way) that in the equation 3^x + x = 30 , I can break up the righthandside into 27 + 3 = 3^3 + 3 , and hence I see that the lefthandside matches if x = 3 ? In the next step, I'll then deliver _proof_ by entering the "guessed" x=3 back into the original equation and see that it works out; that is proof. So we don't actually need to fuddle with Lambert W Function etc., this approach of mine is much shorter and just as good, because _it is based on the same insight_ (oh, pardon, i mean "guess").

    • @yurenchu
      @yurenchu Рік тому

      @@vitorrj4211 As another commenter already said, in this particular case, it's easily seen that the function f(x) = 3^x + x is a continuous and increasing function, and hence there is only one solution to the equation f(x) = 30 (in the real domain).
      By the way, how did his method prove that there are no complex solutions? The Lambert W Function W(y) is only the _principal_ branch of roots to the equation y = x^(e^x) . He chose to break up the exponent 30 into 3 and 27 ; who says there is no solution when breaking up 30 into z and (30-z) where z is complex-valued?

    • @bikramdev007
      @bikramdev007 Рік тому

      @@yurenchu Looks like the "guessing" term hit you hard. Sorry if I made you sad (of angry, I guess)

  • @risinghead
    @risinghead Рік тому

    There is a simple solution that giving x an integer from 1 to 3. You can find the answer in three seconds. But if you must prove it, this equation may be solved by your way.

  • @что-ф3п
    @что-ф3п Рік тому

    f(x)=3^x
    g(x)=-x+30
    f(x) monotonously increasing, g(x) it decreases monotonously, but knows if there is only one solution. In this case, it is obvious x=3

  • @Nikos_Iosifidis
    @Nikos_Iosifidis 11 місяців тому

    In equations with obvious roots like this one we can work more simply and faster as I immediately show with 2 ways of solution in R.
    1st Way
    • If x < 0, then 3^x < 3^0 =1, so 3^x + x < 1 + 0 = 1 and the equation has no root < 0
    • If x > 3 then 3^x > 27, so 3^x + x > 30 so the equation has no root > 3
    • If 0 < x < 3 then 3 ^ x < 27, so 3^x + x < 30 so the equation has no root < 3
    • If x = 3 the equation is true, so the unique root of the equation is x =3
    2nd Way
    We will work with the monotonicity of the function f(x) = 3^x + x - 30
    If x1 , x2 E R with x1 < x2, then 3^x1 < 3^ x2, so 3^x1 + x1 -30 < 3^x2 + x2 -30 i.e. f(x1) < f(x2) , so f is strictly increasing.
    Therefore if it has a root, it is unique.
    Since the equation has the root x = 3, this is also its only root.
    The monotonicity of f can be easily proven with the help of derivatives.
    Indeed, f΄(x) = (3^x)ln3 + 1 > 0, so f is strictly increasing, etc.
    I would like to take this opportunity to announce that I have created a mathematics channel on You Tube called L+M=N
    My channel is at
    www.youtube.com/@Nikos_Iosifidis
    I will be happy if you subscribe to my channel and comment on the solutions of the topics I present.

  • @kennethkan3252
    @kennethkan3252 9 місяців тому +1

    3^×+×=30
    x

  • @guitarbap
    @guitarbap 11 місяців тому +3

    First glance you all can notice X= 3, and its done. Fact 😂

  • @christiansmakingmusic777
    @christiansmakingmusic777 7 місяців тому

    The answer is three. These small examples are great for learning lambert W, but it’s an unnecessary bit of math baggage when the trial substitution is the best approach.

  • @sie_khoentjoeng4886
    @sie_khoentjoeng4886 Рік тому +2

    The nearest value of 3^X to 30 is 3^3 i.e. 27 or X=3.
    Then value of 3^X+X for X=3 is 3^3+3 =27+3=30.
    Note, X must a whole number..

  • @jaju2178
    @jaju2178 9 місяців тому

    Guess x=3 as solution. f(x)=3^x+x is strictly monoton increasing, so x=3 is the only real solution. That saves you about 9 1/2 minutes.

  • @ssalmero
    @ssalmero Рік тому +2

    By inspection x=3 is one solution and it is the only one because 3^x in increasing and 30-x is decreasing. No need to over elaborate!!!

  • @ItsPREPP98
    @ItsPREPP98 Рік тому

    3^x + x = 30
    Now 30 can be written as 3+27 and 27 is just 3³ so 30 = 3³ + 3 but also, 30 = 3^x + x so 3³+3=3^x+x giving x = 3

  • @tigermaths
    @tigermaths 10 місяців тому

    Can you solve x^2+sqrt(x)=84? We can see that one root is 9, but how to calculate that and other roots?

  • @Igoforwards_
    @Igoforwards_ Рік тому +1

    Wow, what is W function? First time seeing one.
    (It's been 30 years since highschool graduate, and never heard of it even in college freshman math class. Is W a basic term these days?)

    • @mehdion
      @mehdion Рік тому

      no its still only in university
      but now its more common bc well... we find videos and stuff that shows it

  • @x81shreyasdhoke93
    @x81shreyasdhoke93 2 місяці тому

    What everyone is failing to understand is the video is not supposed to be about solving the equation easily, but rather be able to solve an exponential-linear function with the help of W Lambert Function. The function is useful for a lot of other problems. Can you not understand that he tried to start off with an easier problem to explain the practical use of the function.

  • @АлиханКопатыч
    @АлиханКопатыч Рік тому

    Легко решил в уме, подставляя числа

  • @jayant8363
    @jayant8363 10 місяців тому

    Beautiful solution. Thank you

  • @przemysawdata6246
    @przemysawdata6246 Рік тому

    3^x + x = 30.
    30 = 27 + 3
    27 = 3^3
    then
    3^x + x = 3^3 + 3 =>
    => x=3

  • @체리-p5r
    @체리-p5r Рік тому

    What is the W function???

  • @Yuri_Gagarin44
    @Yuri_Gagarin44 Рік тому

    3^x+3 = 30 ---> 3^x+3 = 27 + 3 ----> 3^x+3 = 3^3+3 ---> 3^x = 3^3 ---> x = 3

  • @hader45
    @hader45 Рік тому +4

    sir we an get quick answer by putting value of x from 1,2,3 ...

    • @Math_Minds
      @Math_Minds  Рік тому +3

      But this is not a valid mathematical procedure, even that value won't be integer or there may be many other roots. Then what you will do?

    • @hader45
      @hader45 Рік тому +1

      @@Math_Minds then use your method😅

    • @yurenchu
      @yurenchu Рік тому +1

      ​​​​​@@Math_Minds "There may be many other roots"
      The same goes for your method. How did you know at 6:20 that W( (30-x)*ln(3) * e^[(30-x)*ln(3)] ) = (30-x)*ln(3) , unless you already knew the value of x ? Note: the Lambert W Function W(y) is the _principal_ root of the equation y = x*(e^x) , because several different values of x can lead to the same value of y .
      As a comparison: what you did is equivalent to saying
      √((x-7)²) = 2x+1
      ⇒ (x-7) = 2x+1 ⇒ x = -8
      How would we know that the lefthandside would reduce to (x-7) ?
      This is wrong (as can be seen when plugging the found result back into the original equation), the actual solution is
      √((x-7)²) = 2x+1
      ⇒ (7-x) = 2x+1 ⇒ 6 = 3x ⇒ x = 2

  • @Morpheye
    @Morpheye Рік тому +13

    I gave up on contest math years ago being not nearly brilliant enough for it, just got recommended this and it absolutely blew my mind❤

    • @josechacon9939
      @josechacon9939 Рік тому +3

      You are brilliant enough. It takes practice.

  • @HoudiniHamster
    @HoudiniHamster 7 місяців тому

    I have not found the part 3^30 ln(3)= 3^3 ln(3) 3^27, you had to think about it, well done

  • @somatematicaemaisnada4648
    @somatematicaemaisnada4648 Рік тому +2

    Wow, this video on Math Olympiad Exam | Lambert W Function is so informative! I appreciate the detailed breakdown and the insights you've shared here.

  • @babacarwade8500
    @babacarwade8500 9 місяців тому

    30=3power(3)+3 ce qui implique que X=3 par identification...

  • @ryalex20
    @ryalex20 11 місяців тому

    Much faster: 30=3^3+3. Therefore, x=3.

  • @BeastGamer301
    @BeastGamer301 Рік тому +4

    Better solution:
    Transfer x to RHS and take log on both sides. Apply log properties and at last compare LHS=RHS to get x=3

    • @Math_Minds
      @Math_Minds  Рік тому +2

      x log3 = log(30-x) now what?

    • @BeastGamer301
      @BeastGamer301 Рік тому

      @@Math_Minds I am sorry I did not remember the properties of log correctly and wrote log(30-x) = log30/logx. My solution was wrong. The correct property was log x- log y= log(x/y)

    • @Math_Minds
      @Math_Minds  Рік тому +3

      logA - logB = log(A/B)
      but log(A-B) can be express as a series only....

    • @alfredlu7228
      @alfredlu7228 Рік тому +1

      @@BeastGamer301 what the hell? log(x/y)=logx - logy

    • @daniel1478965
      @daniel1478965 Рік тому

      I like this solution. But stuck on how to solve x^x = 27

  • @sankariraman6453
    @sankariraman6453 Рік тому

    It's vvvvsimple. It's = 30. So u put number x 1, 2 , 3. Then u find when x=3. Both sides equal. It takes not even 1 min

  • @kuan-k4m
    @kuan-k4m Рік тому +9

    Have you tried using the exhaustive method? The cube of 3 is 27, so X ≤ 3. The answer to the problem is between 0 and 3. Okay, the problem has been resolved.

    • @pascal_0840
      @pascal_0840 Рік тому +3

      yeah, but that would be easy and simple though, and we want to make math the hardest possible

    • @kuan-k4m
      @kuan-k4m Рік тому

      Yes. When I was studying in college, I felt helpless when I encountered difficulties in math exams. I always wonder why I need to face such complex mathematical problems. I won't be able to use calculus or Newton's XXXX formula in my future life. What is the significance of learning this? However, my cousin is proficient in mathematics. He is an engineer working for China's satellite and rocket systems.@@pascal_0840

    • @mrosskne
      @mrosskne Рік тому +1

      You don't need a method. It's intuitively obvious after you think for literally one second.

    • @headcode
      @headcode Рік тому +2

      Sure, this one was easy to solve because it's using low numbers and x is a whole number. But if x was a rational or imaginary number, we'd need a formula to solve it. That's why the demo

    • @pascal_0840
      @pascal_0840 Рік тому

      @@headcode 😴💤

  • @andimozart8550
    @andimozart8550 Рік тому +1

    W what is that?

  • @alangoncalvez1205
    @alangoncalvez1205 10 місяців тому

    Muito linda a solução..o resultado se consegue sem esforço mas a demonstração e soberba

  • @drabbasjohar
    @drabbasjohar 8 місяців тому

    Nice steps
    I used the following:
    3^x + x =30
    3^x = 30-x (ln both sides)
    xln3 = ln (30-x)
    xln3 = (ln30 / ln x)
    then
    xlnx = ln 30 / ln 3
    xlnx = ln (30-3)
    xlnx = ln 27
    xlnx = 3 ln 3
    x =3
    or by using W function
    ln x e^(ln x) = ln 3 e ^(ln 3)
    W (ln x e^(ln x)0 = W (ln 3 e ^(ln 3))
    then
    ln x = ln 3
    e^ (lnx) = e ^ (ln3)
    therefore
    X= 3
    Thanks

  • @tamirerez2547
    @tamirerez2547 Рік тому

    This is how you write x
    Look at it ❌
    Two straight lines crossing each other in the middle.
    Beside of that good video, nice and CLEAR solution 👍

  • @swampfolk2526
    @swampfolk2526 Рік тому +1

    а че типа сразу не очевиден результат был? Тут надо лишь доказывать, что других корней нет.

  • @tehorgan
    @tehorgan Рік тому +1

    Is x= 1? No Is x = 2? No Is x=3? YES. Solved in 15 seconds. It took me longer to write this then solve the equation. Then I sat through 10 minutes of this plus ads

  • @lavrentizapadni747
    @lavrentizapadni747 29 днів тому

    By inspection, x=3. Time taken = 1 second.

  • @RoadToWolrdCup
    @RoadToWolrdCup 11 місяців тому

    i just can not understand from where u got 3 and 27 ? why is not 1 and 29 or 2 and 28 etc

  • @subramaniansrinivasan3771
    @subramaniansrinivasan3771 Рік тому

    It is very simple just assume X=3 and work out.

  • @sharatchandrasekhar2711
    @sharatchandrasekhar2711 Рік тому

    Trivial problem. The answer is 3 by simple inspection.

  • @CK-jd6yf
    @CK-jd6yf Рік тому

    Does this work just because the answer happened to be 3 or can you solve anything similar with this? Lets say 5^x + 2x = 1723 or something like this?

    • @jrm4728
      @jrm4728 8 місяців тому +1

      X= 4.628406 .
      Use y/x function and adjust exponet.

  • @Dharmarajan-ct5ld
    @Dharmarajan-ct5ld Рік тому

    to show application of lambert function this is ok. But, why this simple question was chosen. Is it mis use of lambert function. I too use results and adhoc arguments in my channel but why so lengthy??

  • @gulboyrathesungod
    @gulboyrathesungod Рік тому +1

    3^x+x = 30.
    Just looking at this, it is clear that x cannot be greater than 3, given the constraint of 30.
    And x cannot be less than 3, because even at 2.999, 3^x + x will be less than 30.
    So, x has to be 3 👍

    • @lmfao3293
      @lmfao3293 Рік тому

      no wait i was right we can actually do 3^1,2 or 3^1.7 or something :) no one said this is only natural number

    • @gulboyrathesungod
      @gulboyrathesungod Рік тому

      @@lmfao3293 Buddy, for any value less then 3 it will never add up to 30. It will always be less than 30.
      Max value for x = 2.99999, would result in 3^2.99999 < 27.
      So, when you add them, it can only be less than 30.
      Glad you made such a bad argument. Makes me look even more smart 🧐🧐🧐🤣🤣🤣

    • @lmfao3293
      @lmfao3293 Рік тому

      @@gulboyrathesungod xD Ok ok all you can do it's just guess untill you get right answer :)?

    • @gulboyrathesungod
      @gulboyrathesungod Рік тому

      @@lmfao3293 So, when you don't understand the calculation, you call it guess? Well, I don't blame you. With the level of intelligence demonstrated, we cannot expect more..👍

    • @lmfao3293
      @lmfao3293 Рік тому

      @@gulboyrathesungod :) ok try this: 4^x+x=4294967312 xDD You again try to use calculator to get the answer again right :)

  • @jaggisaram4914
    @jaggisaram4914 Рік тому +1

    x = 3. 3^3+3 = 27+3 =30

  • @kientrucnguyen3095
    @kientrucnguyen3095 Рік тому

    X^2+x=4^2+4 => x=4 là chưa chặt chẽ . Tương tự bài toán trên giải cách này thì cần cm thêm rằng đây là kết quả duy nhất

  • @tejina7780
    @tejina7780 Рік тому

    이걸푸는데 10분이다 걸린다는것에 참 대단하다고 생각한다 ... 그냥 보면 답나오는 문제아니냐;;

  • @nasimotosin
    @nasimotosin Рік тому

    3^3は27である。
    ∴30-27=3
    乗数と引いて現れた数が一致する。したがってx=3は満たす。
    これじゃ不十分かな?この解法なら小学生でも解ける。一般解じゃないけど文系なので良し!

    • @漢室復興
      @漢室復興 Рік тому

      それだと、他の解の可能性を吟味していないので不十分ですね…。

    • @glunp789
      @glunp789 Рік тому

      1,2回微分してグラフ描けばいい

  • @marcusgloder8755
    @marcusgloder8755 Рік тому

    3^(x) + x = 30
    3³ + 3 = 27 + 3 = 30
    x = 3
    Best regards
    Marcus 😎

  • @박형민-h9d
    @박형민-h9d Рік тому +1

    3^3+3=3^×+×
    X=3. Simple

  • @jahangirtamboli477
    @jahangirtamboli477 Рік тому

    I tried by putting x = 1,2,3 n got the answer 3, as very easy solution as we r interested in solution. Method mentioned above is very complicated.

    • @Math_Minds
      @Math_Minds  Рік тому +1

      Try to solve it : 3^x + x = 20.
      That is the general approach to solve this type of equation.

  • @DuongHoang-yk1ff
    @DuongHoang-yk1ff Рік тому

    x = 3. Because
    If x > 3 => 3^x + x > 3^3 + 3
    If x < 3 => 3^x + x < 3^3 + 3
    Simple answer.

  • @samyakchapagain1420
    @samyakchapagain1420 Рік тому

    Can we use the iterative method?

  • @tirr1
    @tirr1 Рік тому

    What is the “ w “ at the end of the solution mean?

  • @ЕлизаветаБагаева-й7д

    Решается устно за две секунды . Представив графики левой и правой частн уравнения. Корень один, легко найти умным подбором! Х=3

    • @renecro1007
      @renecro1007 10 місяців тому

      Тоже от Эльмира сюда пришёл?

  • @marbles12078
    @marbles12078 Рік тому

    My math professor said that if you use more than 4 lines to solve an equation, you don't understand the music of the universe. You might understand the math, but not what makes numbers sing

  • @russeil
    @russeil 8 місяців тому

    Thank you! That was interesting

    • @Math_Minds
      @Math_Minds  8 місяців тому +1

      Glad you enjoyed it!

  • @i_am_a_gugugu
    @i_am_a_gugugu Рік тому

    (3^x+x=30)
    3^1+1=4
    3^2+2=11
    (3^3+3=30)
    3^x+x=3^3+3
    x=3

  • @chrisw4562
    @chrisw4562 Рік тому +4

    Very interesting way to solve the problem. Thanks for sharing. I just tried some numbers and got the answer very quickly.

    • @mikebresnahan8682
      @mikebresnahan8682 Рік тому

      3^1 + 3 = 6
      3^2 + 3 = 12
      3^3 + 3 = 30
      done
      I'm guessing the intent of this video was to show a general method of solution as opposed to a practical way to solve this particular problem.

    • @frenchimp
      @frenchimp Рік тому

      You can gain time by noting that if x is an integer it is a multiple of 3...

    • @junwoo5702
      @junwoo5702 Рік тому

      @@mikebresnahan8682if its 3^1 its +1 not +3 😂😂😂😂

  • @VladVeninTV
    @VladVeninTV Рік тому

    hello, do you have another channel Rashel's classroom?

  • @Reyansh-lc8ez
    @Reyansh-lc8ez 6 місяців тому +1

    so good

  • @LaVoixduPeuple.
    @LaVoixduPeuple. 10 місяців тому

    What is w function?

  • @heyyo1336
    @heyyo1336 Рік тому +1

    what it just 3*3*3 + 3 = 30???????!!! why bother so many steps

  • @damirko06
    @damirko06 Рік тому +1

    please, show me more long-winded ways to solve that

  • @A.D.A.M.M
    @A.D.A.M.M Рік тому

    What does w mean ? What's the value of w?

  • @bluejay579
    @bluejay579 10 місяців тому

    この式に関しては、見た瞬間に3って分かった。
    他に解があるかどうかは分からんかったが。

  • @mjaveed1992
    @mjaveed1992 Рік тому +1

    Very easy 3³+3=30, some problems don't need to work

  • @levskomorovsky1762
    @levskomorovsky1762 Рік тому

    That's great! A strictly consistent proof by representing the left and right sides of the equation in a form convenient for taking the Lambert function, instead of an intuitive, although obvious solution by representing the number 30 in the form of 3^3 + 3 !!!

    • @guidodenbroeder935
      @guidodenbroeder935 Рік тому

      Actually if it didn't exist yet you could simply define it.

    • @davidkeck6183
      @davidkeck6183 Рік тому

      but what's the purpose of the triple factorial? (jk)

    • @levskomorovsky1762
      @levskomorovsky1762 Рік тому

      @@davidkeck6183
      Three exclamation marks express the positive emotions of the review author. And how do you express your emotions???

    • @davidkeck6183
      @davidkeck6183 Рік тому +1

      @@levskomorovsky1762 I wrote "but what's the purpose of the triple factorial? (jk)" where "(jk)" is a common convention for abbreviating "Just Kidding". It was basically a dad joke.

    • @levskomorovsky1762
      @levskomorovsky1762 Рік тому +1

      @@davidkeck6183 Thank you. I did not know. I am not an English language specialist..

  • @fisicamatematicasprofewilliam
    @fisicamatematicasprofewilliam 10 місяців тому

    Que gran tutoriual tan excelenye de examen de olimpiadas

  • @yassermasalkhi6148
    @yassermasalkhi6148 Рік тому

    What does the small ohm mean?

  • @antonioeustaquiodocarmo7510
    @antonioeustaquiodocarmo7510 8 місяців тому

    Mesmo substituindo o 3 por X, mentalmente a resposta é X= 3.

  • @ジョージパパ-x6x
    @ジョージパパ-x6x Рік тому

    普通に3の倍数になにかを足して30になる数字を1つづつ探す方がシンプルだし良い。