Stanford University Admission Interview Tricks | Find x=?

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 23

  • @PetrosAvesta
    @PetrosAvesta Місяць тому +6

    Thank you for your solution, though there is a simpler way and that's: X= (30 + (30 +X)^1/2)1/2 or X= (30 + (30 + (30 +.....)^1/2)^1/2)^1/2 Square both sides of the equation and you get: X^2 = 30 + X Or X^2 - X -30 = 0 This equation has two roots 6 & -5. -5 is not acceptable as X must be > 0. so X=6.

    • @davidseed2939
      @davidseed2939 Місяць тому

      I did by guessing.
      X^2-30= sqrt(x+30)
      Must be positive
      Smallest integer x is 6 to keep left hand side positive and evaluate to 6, which is also rhs so that is the solution.
      Interesting that
      X^2-30=x is also the solution to x=sqrt(x+30).
      Does this generalise so that for any problem where “30” is replaced by another integer say “c”
      Then the solution to that problem would be the solution to the quadratic
      x^2-x-c=0
      Ie x=(1+-sqrt(1+4c))/2
      Other “easy” values of c found from c=x^2-x for integer values of x
      x=2,3,4,5,6,7, c = 2,6,12,20,30,42. ( note that this sequence is the triangular numbers times 2)

    • @PetrosAvesta
      @PetrosAvesta Місяць тому

      @@davidseed2939 The answer to your question is "Yes". As long as C>0, the Delta for the quadratic equation X^2 - X -C = 0 is greater than zero and the equation has two real solutions. The sequence of Cs (2 times the triangular numbers) is undoubtedly generated from the integer values of X(excluding 1) sequence in the eq. C=X^2-X.

    • @sergeilyubski852
      @sergeilyubski852 16 днів тому

      Sorry could you please explain. If I square both sides I get 30+ (30+x)^1/2 = x^2 . Right ? So according to you 30 + (30 +x)^1/2 = 30 +x i.e. (30+ x)^1/2 = x . How ? Could you please explain your simplification?

    • @PetrosAvesta
      @PetrosAvesta 15 днів тому

      @@sergeilyubski852 Hi, Let's start with this equation: X = (30 + (30+X)^1/2)^1/2 Now replace the X on the RHS of the equation with the original X and repeat this for a number of times. You get the following series equation, however please note the last term in all such equations always remain to be X. Therefore we obtain: X = (30 + (30 + (30 +.......+ (30+X)^1/2)^1/2 Now square both sides and you get: X^2 = 30 + (30 + ............+(30+X)^1/2)^1/2 OR : X^2 = 30 + X.

  • @Penndennis
    @Penndennis Місяць тому +2

    A quadratic in terms of 30 - constant and variable at the same time - I love it. Thank you so much!

    • @superacademy247
      @superacademy247  Місяць тому

      You're very welcome! Wonderful! Glad you liked it ✅👌🙏🙏🤩💕

  • @Cekcom
    @Cekcom 24 дні тому +3

    11:16 Why x = (-1 + sqrt(117))/2 was rejected?

  • @jendamatus
    @jendamatus Місяць тому +2

    Except that I didn't guess, the solution is easy when you deal with numbers

  • @prollysine
    @prollysine 2 місяці тому +2

    we get , x^4-60x^2-x+870=0 , (x-6)(x^3+6x^2-24x-145)=0 , x=6 , x^3+6x^2-24x-145=0 , (x+5)(x^2+x-29)=0 , x= -5 ,
    / x^2+x-29=0 , roots not integer , not a solu , / , test , x=6 , V(30+V(30+6))=6 , V(30+6)=6 , 6=6 , OK ,
    x=-5 , V(30-5)=5 , V(30+5)=V35 --> not 5 , x= -5 , not a solu , solu , x=6 ,

  • @9허공
    @9허공 Місяць тому +1

    let y = √(30 + x) => squaring given equation 30 + y = x^2 and 30 + x = y^2
    subtracting, y - x = x^2 - y^2 => x^2 - y^2 + (x - y) = (x - y)(x + y +1) = 0
    => (case y = x) x^2 = 30 + y => x^2 - y - 30 = (x - 6)(x + 5) = 0 => x = 6 (since x > 0)
    (case y = -1 - x) x^2 = 30 -1 - y => x^2 + x + 29 = 0 => no real solution.

  • @johnlv12
    @johnlv12 2 місяці тому +2

    genius

  • @marcofrigerio2217
    @marcofrigerio2217 2 місяці тому +1

    m+x=y^2, m+y=x^2, x^2-y^2+x-y=0, (x-y)(x+y+1)=0. But x>0 and y>0, so x+y+1>0. From x-y=0, y=x, m+x=x^2, x^2-x-30=0 (m=30): x=6 and x=-5 (not valid).

  • @jendamatus
    @jendamatus Місяць тому +3

    6 too much easy

    • @CrYou575
      @CrYou575 Місяць тому

      Well intelligent guessing usually is for that particular root.

  • @whoff59
    @whoff59 Місяць тому

    Just tried and only some seconds of thinking needed:
    6 is at a solution.
    Perhaps there are more solutions because of roots and resulting quadratic equations ...

  • @serhiizalutskyi5911
    @serhiizalutskyi5911 Місяць тому +1

    too complicated. video is low quality. paper is shaking.

  • @gibbogle
    @gibbogle 7 днів тому

    Nothing to do with Stanford. You can look at this and see that x = 6 in 5 seconds.

  • @dulacdominique7630
    @dulacdominique7630 2 місяці тому

    Conditions d'existence ? ?????
    Pas la solution la plus simple !

  • @harvey2472
    @harvey2472 Місяць тому +2

    Sir x is 6 why easy is for difficult.

    • @harvey2472
      @harvey2472 Місяць тому

      Make students to be stupid.