Introduction to Sequence Spaces Part 1

Поділитися
Вставка
  • Опубліковано 21 гру 2024

КОМЕНТАРІ • 14

  • @colinmundy9836
    @colinmundy9836 4 роки тому +1

    Why us an+1 - an strictly greater than zero? Could the n+1 term in the x sequence and y sequence not be equal to each other and thus give us a modulus of zero?

  • @asemabdelraouf7161
    @asemabdelraouf7161 8 років тому +2

    At 15:56 an < bn implies that lim an

    • @mmackeviciu125126127
      @mmackeviciu125126127 6 років тому

      I guess in the specific example he gave, if bn is the sequence on the right then the inequality is indeed strict, since |xn-yn|/(1+|xn-yn| < 1 always, hence every term in the sequence on the left will be strictly smaller than every term on the right. He should have been more precise.

  • @duckymomo7935
    @duckymomo7935 8 років тому +3

    I don't think you should use i in the metric defitinion because it confused me between index and imaginary number

    • @dionsilverman4195
      @dionsilverman4195 8 років тому

      Exactly

    • @claudiagaudino2469
      @claudiagaudino2469 5 років тому +2

      I swear to god I was like: "ooook I guess we have an esponential complex function to start with"

  • @debendragurung3033
    @debendragurung3033 6 років тому

    2:30 what exactly is that formula called?

    • @julians3084
      @julians3084 5 років тому

      Have you found out what it is called?

  • @tekaaable
    @tekaaable 5 років тому +1

    Thank you!

  • @zl7460
    @zl7460 8 років тому +4

    although conclusion is true, your contradiction proof was wrong

  • @semaisamir2050
    @semaisamir2050 4 роки тому

    Epsilon should be kept the same for the contradiction, and just reverse "there exist" in front of N by "for all", instead of "not exist", and at the end, reverse the inequality |an - supT| should be greater or equal than epsilon

    • @jobel6589
      @jobel6589 3 роки тому

      it is just the same.

  • @RealMcDudu
    @RealMcDudu 4 роки тому

    You are so rigorous sometimes I just have to skip forward :-P But good videos non the less.