Simplifying a Tough Radical Expression

Поділитися
Вставка
  • Опубліковано 20 січ 2025

КОМЕНТАРІ • 114

  • @advaitpetiwale9596
    @advaitpetiwale9596 3 роки тому +10

    Haha, Could hear your smile and satisfaction near the end of the second method. You wrinkled a lot of brains with this one!

  • @BCS-IshtiyakAhmadKhan
    @BCS-IshtiyakAhmadKhan 3 роки тому +1

    Write 2√3 +2 as (√3+√2)+(√3-√2)+2 which is equal to the square of [✓{√3+√2} +✓{√3-√2}]

  • @meivagari2015
    @meivagari2015 3 роки тому +13

    Hi, can I ask a question? At 8:37 you said that -√2 +2√2 equal to -√2. Isn’t that supposed to be +√2. Am I missing something here?

    • @albinskariah7418
      @albinskariah7418 3 роки тому +3

      Correct

    • @sweetcornwhiskey
      @sweetcornwhiskey 3 роки тому +3

      You're not missing anything he just wrote it wrong.

    • @anshumanagrawal346
      @anshumanagrawal346 3 роки тому +3

      He corrected himself later tho

    • @meivagari2015
      @meivagari2015 3 роки тому +2

      Thank you so much for all the reply, I used this video to learn mathematics so I thought I missed a step or something.

    • @P4BL0_C4L10
      @P4BL0_C4L10 2 роки тому

      Watch a little more

  • @adandap
    @adandap 3 роки тому +1

    I puzzled over this for a while and didn't see your neat solution at first. But I finally found a variation on it. The expression with root(2) and root(3) suggested trig to me, so I drew a right triangle with root(3) on the hypotenuse, 1 on the horizontal and root(2) on the vertical. Call the angle t. Then x = root(2sec(t)+2) - root(sec(t) - tan(t)). Then square x:
    x^2 = 2sec(t) + 2 + sec(t) - tan(t) - 2 root( 2 sec^2(t) - 2 sec(t) tan(t) + 2 sec(t) - 2 tan(t) )
    The stuff inside the root is a perfect square of (sec(t) - tan(t) + 1), which is easy to prove using tan^2(t) + 1 = sec^2(t) so x^2 simplifies to sec(t) + tan(t) = root(3) + root(2) //.

  • @水平線-g6b
    @水平線-g6b 3 роки тому +12

    Nice video!
    Just for supplement, the discussion would be more detailed if you discuss the radical expression is either positive or negative.

  • @PunmasterSTP
    @PunmasterSTP 3 роки тому +4

    Conjugate? More like conjuGREAT! I just had your channel recommended to me by a friend and I am so glad that he did so. I’m planning to become a regular, and I am sure I will share your channel in the future as well. Thanks so much for making and posting all of your videos!

    • @SyberMath
      @SyberMath  3 роки тому +3

      Welcome aboard! 💖😊

    • @PunmasterSTP
      @PunmasterSTP 3 роки тому +1

      @@SyberMath I'm glad to be here, and thank you for having me!

  • @mattiarigo1155
    @mattiarigo1155 3 роки тому +1

    When i solved this problem i used the first method, but the second method was honestly very instructive, i didn't know you that technique, thank you for teaching me

  • @КорнейКвадратных
    @КорнейКвадратных 3 роки тому

    For this kind of problems there is the complex radical formula:
    sqrt(a+-sqrt(b))=sqrt((a+sqrt(a^2-b))/2)+-sqrt((a-sqrt(a^2-b))/2)
    So sqrt(sqrt(3)-sqrt(2))=sqrt((sqrt(3)+1)/2)-sqrt((sqrt(3)-1)/2)
    And sqrt(2*sqrt(3)+2)=2*sqrt((sqrt(3)+1)/2).
    So the difference is simply with another sign: sqrt((sqrt(3)+1)/2)+sqrt((sqrt(3)-1)/2)=sqrt(sqrt(3)+sqrt(2)).

  • @ramaprasadghosh717
    @ramaprasadghosh717 3 роки тому +1

    The expression 6 -2√6 + 2√3 -2√2 contains 2*√2, 2*√3, and 2*√2*√3,
    whereas (√2)^2 + (√3)^2 + 1*1 = 6
    Hereby, 6 -2√6 + 2√3 -2√2
    = (1+√3 -√2) ^2
    this is helpful to simplify this solution

  • @huantangoc57
    @huantangoc57 3 роки тому +1

    Why 8:50 X= √(√3-√2) ?

  • @rssl5500
    @rssl5500 3 роки тому +1

    I think both do the methods are elegant ! I mean obviously second method was simpler but the interesting thing in the first method was noticing that the expression under the radio was in fact a perfect square ! I think it’s better to learn all methods cause you can have more creativity and solve bigger problem that can only be solved in one way
    Thank you sybermath math :D

  • @arunsannake1911
    @arunsannake1911 3 роки тому +1

    U make it very simple to understand.we enjoy watching & learning your methods.Thank you.

    • @SyberMath
      @SyberMath  3 роки тому +1

      Thank you! I'm glad to hear that! 💖

  • @yusufjamal5474
    @yusufjamal5474 3 роки тому +1

    Excellent problem. Since we can make it in the form of sqrt(3)/2 and 1/sqrt(2) after taking some terms common( which can be considered in the form of sin and cos), I tried to approach the problem using Trigonometry; however, I couldn't go far. Should these types of problems be tried using trigonometry?

  • @MathElite
    @MathElite 3 роки тому +3

    That's quite radical!! (i saw your comment on my channel hehe)
    This is a pretty nice question since the end result should look nice

    • @MathElite
      @MathElite 3 роки тому +1

      replying to my comment maybe im not spam to youtube anymore

    • @vedants.vispute77
      @vedants.vispute77 3 роки тому

      @@MathElite haha lol don't worry now

  • @pratimakumari6299
    @pratimakumari6299 3 роки тому +6

    I also take formula of a+b square and I done it is good radical simplification questions

  • @henrydenner5448
    @henrydenner5448 3 роки тому +1

    Loved both methods.
    The subject of Mathematics is simply the most beautiful subject ever. 😍😍😍😍

  • @user-dz6pi4sm8u
    @user-dz6pi4sm8u 3 роки тому

    I call the first root x, second y, x-y=z
    x=y+z
    (y+z)^2=2root3+2
    y^2+2yz+z^2=2root3+2
    y^2=root3-root2
    I also get yz=1 by using 5-2root6=(root3-root2)^2
    finally z^2=root3+root2
    the key to solve this problem is to know what is 5-2root6 as you mentioned in the beginning, but it was quite obvious for me.

  • @Mathiqnice
    @Mathiqnice 3 роки тому

    Rất thú vị bằng việc tính toán căn thức bằng hằng thức, và đặt ẩn phụ. Cảm ơn.

  • @aashsyed1277
    @aashsyed1277 3 роки тому +4

    wow syber!
    thanks for these joyful moments !

  • @hanantabacaro7532
    @hanantabacaro7532 3 роки тому

    Second solution - Brilliant!!

  • @prathikkannan3324
    @prathikkannan3324 3 роки тому +1

    Loved the constructive beauty of the 2nd method.

  • @mohammadazadi4535
    @mohammadazadi4535 3 роки тому +1

    2nd method is briliant.thanks alot

  • @vacuumcarexpo
    @vacuumcarexpo 3 роки тому +2

    Darn, I couldn't have a single clue to this!

  • @aashsyed1277
    @aashsyed1277 3 роки тому +1

    very nice syber!!!
    i will keep supporting you!!!!!!!

  • @zemyaso
    @zemyaso 3 роки тому

    Finding what's under that long square root is just impossible if you're not a computer.
    Also how would you know to do what you did in the second method?

    • @SyberMath
      @SyberMath  3 роки тому +1

      As I said in the video, I know the 2nd method will work because that's how I came up with this problem. Then thinking about an alternative approach brings me to the 1st method which I think is better but I agree, it's not easy to see!

  • @enejidjsi5939
    @enejidjsi5939 3 роки тому

    The first method is more intuitive, but the second method is more elegant. I'd say I like the 2nd one more.

  • @nicogehren6566
    @nicogehren6566 3 роки тому +1

    nice solutions sir thanks

  • @anshumanagrawal346
    @anshumanagrawal346 3 роки тому

    3:26 That explains a lot..

  • @satyapalsingh4429
    @satyapalsingh4429 3 роки тому

    Oooh so interesting .Both the methods are praiseworthy . I salute you from the bottom of my heart , dear professor . God bless you .

    • @SyberMath
      @SyberMath  3 роки тому

      It's my pleasure! Thank you! 💖

  • @tonyhaddad1394
    @tonyhaddad1394 3 роки тому

    I liked both method , mann you re awesome !!!!

    • @SyberMath
      @SyberMath  3 роки тому +1

      Glad to hear that! Thanks! 💖

  • @echandler
    @echandler 3 роки тому

    Great problem and solution. I like how you de-nested the radical by turning it into a perfect square, twice!

  • @242math
    @242math 3 роки тому

    was hard but you mastered it bro

    • @SyberMath
      @SyberMath  3 роки тому

      Oh, thank you, brother! 💖

  • @tl1989
    @tl1989 3 роки тому +1

    The first method was really amazing!

  • @diogenissiganos5036
    @diogenissiganos5036 3 роки тому +4

    Holy smokes! That factorisation was insane!

  • @lauthomas7179
    @lauthomas7179 3 роки тому

    I have reached the result
    ( ( 3^0.5+ 1)^0.5 + (3^0.5 - 1)^0.5) /(2^0.5)
    Squaring and simplifying and then take a square root , giving
    (3^0.5 + 2^0.5 )^0.5

  • @nuranichandra2177
    @nuranichandra2177 3 роки тому

    Is this a perfectly radical problem or what? Good one 👍

  • @abuobidashihab
    @abuobidashihab 3 роки тому

    Love your videos 😍😍

  • @Rbmukthegreat
    @Rbmukthegreat 3 роки тому

    😃 wonderful solution!

    • @SyberMath
      @SyberMath  3 роки тому

      Thank you, Roh4n! 😊

  • @sarvareshboltayev1072
    @sarvareshboltayev1072 3 роки тому

    Perfect

  • @snejpu2508
    @snejpu2508 3 роки тому +1

    Wow. I gave up this problem. Finding that sqrt(3)-sqrt(2)+1 under the radical is pure genius... Second method is a little cheating though. I mean, you just did something so far from the original problem that it might be considered guessing and checking. Of course unless you saw this working in your mind. Ramanujan style. : )

    • @SyberMath
      @SyberMath  3 роки тому +2

      I know! The second one is reverse engineering sort of 😁

    • @arkanilpaul9501
      @arkanilpaul9501 3 роки тому

      @@SyberMath Exactly 😂😂

  • @willie333b
    @willie333b 3 роки тому

    This is magic

  • @3r3nite98
    @3r3nite98 3 роки тому +1

    Hmm what a rooty expression.
    Also adway kumar if your reading this,I'm terribly sorry for making u feel bad.
    But you shouldn't have made me look dumb,so let's both just apologize and forgive each other.
    Also keep up the content Syber.

    • @MathElite
      @MathElite 3 роки тому +1

      I hope you guys can get along from now on

    • @3r3nite98
      @3r3nite98 3 роки тому

      @@MathElite No worries we will try getting along.

    • @SyberMath
      @SyberMath  3 роки тому +1

      Thank you!

  • @Z00711287
    @Z00711287 2 роки тому

    Very clever

  • @c8h182
    @c8h182 3 роки тому

    Good content again thank you :)

    • @SyberMath
      @SyberMath  3 роки тому +1

      No problem. Thanks for watching! 😊

  • @krisbrandenberger544
    @krisbrandenberger544 3 роки тому

    I liked the 2nd method better.

  • @ashishverma-mj1kl
    @ashishverma-mj1kl 3 роки тому

    shouldn't the answer be sqrt(sqrt(3) + sqrt(2))
    cause (-sqrt(2) + 2sqrt(2) = sqrt(2))

  • @mputuchimezie7966
    @mputuchimezie7966 3 роки тому

    My brain is buzzing

    • @SyberMath
      @SyberMath  3 роки тому

      Sorry this was a little intense

    • @mputuchimezie7966
      @mputuchimezie7966 3 роки тому

      @@SyberMath But the knowledge I gained is priceless, thank you so much

  • @carly09et
    @carly09et 3 роки тому

    Error + not - :(, mechanical errors

  • @18angchikien75
    @18angchikien75 2 роки тому

    Nice

  • @damiennortier8942
    @damiennortier8942 3 роки тому

    Warning, on some of your videos, you've forgotten the subtitle (remember, I'm French...)

  • @pardeepgarg2640
    @pardeepgarg2640 3 роки тому +1

    Hi
    I don't know answer this time 😅😅😅

  • @supramitra
    @supramitra 3 роки тому +1

    Such a great radical change(Revolution) lol

    • @resilientcerebrum
      @resilientcerebrum 3 роки тому +1

      can you tell the answer to the question you wrote in the live chat?

    • @supramitra
      @supramitra 3 роки тому +1

      @@resilientcerebrum the answer is cosecθ-cotθ,you can check this out on math elite's channel also

  • @barakathaider6333
    @barakathaider6333 2 роки тому

    👍

  • @ashishpradhan9606
    @ashishpradhan9606 3 роки тому

    Lovely 🥰🥰🥰

  • @guilhermewashington7367
    @guilhermewashington7367 3 роки тому

    errou ai o sinal e raiz de 3 mais raiz de 2

  • @michaelempeigne3519
    @michaelempeigne3519 3 роки тому

    who uses flag division here ?

    • @SyberMath
      @SyberMath  3 роки тому

      What's flag division?

    • @trelligan42
      @trelligan42 3 роки тому

      @@SyberMath It's a method in Vedic math. ua-cam.com/video/ykNSwSBe8Lw/v-deo.html

  • @rssl5500
    @rssl5500 3 роки тому

    Hello I’m early :D

  • @felipefuenzalida2499
    @felipefuenzalida2499 3 роки тому

    :3