A Good Math Olympiad Geometry Challenge | Math Olympiad Questions | Solve for n

Поділитися
Вставка
  • Опубліковано 24 січ 2025

КОМЕНТАРІ • 162

  • @wes9627
    @wes9627 Рік тому +27

    Surprisingly this is one of the Golden Ratio triangles with n² = Φ = (√5 + 1)/2 as the square of two of the six roots.
    Proof: n⁶ - n⁴ - n² = 0 or n⁴ - n² - 1 = 0, which has the solution n² = (√5 + 1)/2

    • @aidan2453
      @aidan2453 Рік тому

      What is the golden ratio? If you have time to explain.

    • @zipprime6956
      @zipprime6956 Рік тому +1

      @@aidan2453
      In the simplest way, dividing a section into two parts so that the ratio of the length of the longer one to the shorter one is the same as the ratio of the entire section to the longer part. But the get the actual mathematical terms you would need to google it on your own

    • @aidan2453
      @aidan2453 Рік тому

      @@zipprime6956 thank you!!

    • @wes9627
      @wes9627 Рік тому

      @@aidan2453 Here is a riddle. Think of a positive number Φ. Subtract 1 from that number Φ-1 and invert it 1/(Φ-1) and you get back Φ=1/(Φ-1). What is that positive number? Rearrange this equation to Φ^2-Φ-1=0 and solve for Φ=(1+√5)/2 and there you have the famous golden ratio that whole books have been written about.
      Here is another riddle. Think of a positive number φ. Add 1 to that number φ+1 and invert it 1/(φ+1) and you get back φ=1/(φ+1). What is that positive number? Rearrange this equation to φ^2+φ-1=0 and solve for φ=(-1+√5)/2 and there you have the famous inverse golden ratio, φ=1/Φ=Φ-1.
      Just a bit of food for thought. sin18°=φ/2=1/(2Φ) and sin54°=Φ/2=1/(2φ)
      sin²18°+cos²54°=[(Φ-1)^2+Φ^2]/4=(2Φ^2-2Φ+1)/4=(2Φ+2-2Φ+1)/4=3/4

    • @onradioactivewaves
      @onradioactivewaves 11 місяців тому

      ​@@aidan2453it sneaks into so many things. You can generate it with the Fibonaccie sequence, which comes up in nature for example in human body proportions or how many rows are on a pineapple. A standard sized sheet of paper is based on the golden ratio put 2 sheets together side by side and rotate it 90⁰ and you have the same shape of twice the area.
      There is more interesting properties you can find by expanding powers of the Golden ration, but some of the simplest forms are φ2=φ+1 or
      1/φ=φ-1 or
      (φ+1)(φ-1)=φ
      (this is all the equation rearranged, there's many more interning ones you can find at higher powers). Solve the quadratic x²-x-1=0 to get roots of
      φ and φ
      Look up Fibonacci spiral to see how the sequence generates the golden ratio.

  • @davidbrisbane7206
    @davidbrisbane7206 Рік тому +30

    Divide each side by n. This is allowed as it is congruent to the given triangle.
    So the side lengths in the new triangle are now 1, n and n².
    Now by the Pythagoras theorem
    (n²)² = n² + 1².
    So n⁴ - n² - 1 = 0
    Let y = n², so y² - y -1 = 0.
    So, y = (1 ± √5)/2 = n²,
    But n² > 0, so, n²= (1 + √5)/2
    so, n = √((1 + √5)/2)

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому +6

      You are a genius and so sweet ♥️♥️♥️♥️🥰🥰🥰

    • @penguincute3564
      @penguincute3564 Рік тому

      so the triangle is Φ:Φ²:Φ³?

    • @moshenazarathy6211
      @moshenazarathy6211 Рік тому

      @@penguincute3564 actually the square roots
      of each of the three Phi powers

    • @moshenazarathy6211
      @moshenazarathy6211 Рік тому

      or formulate the pythagoras of the original triangle ( n^2+(n^2)^2=(n^2)^2 and then divide both sides by n^2 to obtain your 1+n=n^2 pythagoras relation of the 1/n-scaled down similar (not congruent!) triangle

  • @alexandermikhailov2481
    @alexandermikhailov2481 Рік тому +55

    It took me a while to realize that 'scared' really meant 'squared' 😂

    • @pierreduchesne0001
      @pierreduchesne0001 Рік тому +2

      Maths are scaring.

    • @ramanma9915
      @ramanma9915 Рік тому +3

      This doesn’t appear to be an olympiad problem. This is just a class IX problem

    • @recepduzenli3263
      @recepduzenli3263 Рік тому

      Olimpiyat seviyeye değil sana katılıyorum dostum​@@ramanma9915

    • @Fire_Axus
      @Fire_Axus Рік тому

      @@pierreduchesne0001 no

  • @Psykolord1989
    @Psykolord1989 Рік тому +1

    Before watching:
    Pythagorean theorem tells us a^2+b^2=c^2. Then we have n^2 + n^4=n^6, since (a^m)^n = a^(mn). We group all the terms on one side and get n^6-n^4-n^2 = 0
    Presuming n is not 0 (because if so then we're literally measuring nothing) we can divide by n^2 to get n^4-n^2-1= 0.
    Substituting in X = n^2, we write this as x^2-x-1= 0. We then use the quadratic formula to arrive at x= (1 +- sqrt 5)/2, where +- means '+ or -' because I can't use altcode on my phone.
    But this is X. Since x = n^2, we square root to find n. We can then disregard the 1- sqrt5 solution, as that number is negative and would yield a complex n. Instead we get n = +- sqrt ((1+sqrt5)/2). If we presume our length must be positive and real, we then have only n = sqrt((1+sqrt5)/2)
    Of the remaining 5 roots to n^6-n^4‐n^2=0; two are 0 (recall we accounted for that before dividing by n^2 earlier), two are complex (+- sqrt ((1-sqrt5)/2), and one is negative (-sqrt ((1+sqrt5)/2)). Thus, the solution listed above, sqrt ((1-sqrt 5)/2) is the only solution that gives us a positive real length.

  • @jillkitten5388
    @jillkitten5388 Рік тому +10

    In the initial "rejected" result, the issue is NOT that it would be negative length, when you evaluate it, as it is "n^2 = ...", you would have to square root the value to find 'n', so it is that you would have to take the square root of a negative number, making it imaginary, you would have a length with an imaginary number, so again, it isn't that you would have a negative length, it is that you would have an imaginary length.

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому +1

      You are a Genius and So sweet 🥰🥰♥️♥️♥️

    • @larswilms8275
      @larswilms8275 Рік тому +2

      Since n^2 is also a length in the triangle. you can reject it in this case, on the ground that the n^2 is negative and therefor one of the side would have to be negative.

  • @therealbarnekkid
    @therealbarnekkid Рік тому +1

    Very good.

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend ♥️♥️♥️😍😍

  • @pracha95
    @pracha95 Рік тому +1

    Good job!

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend 🥰🥰♥️♥️♥️

  • @Hayet-jb2sd
    @Hayet-jb2sd 11 місяців тому

    Tres bien

  • @johngough2958
    @johngough2958 Рік тому +1

    Beautiful question!

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend ♥️♥️♥️😍😍

  • @larryscott3982
    @larryscott3982 Рік тому +3

    Not to mention that the side n^2 is longer than side n but the diagram has it smaller. This made me question how n^2 could possibly be smaller than n. Which makes n^3 even smaller.

    • @maushgw
      @maushgw Рік тому +1

      To answer the question, n^2 is smaller than n if n is in range 0 < n < 1. And as you pointed out, n^3 would be even smaller. With that and the fact, that n^3 must be greater than n, since it is the hypotenuse of the triangle we learn two things. First, n must be greater than 1, second, don't count on drawings.

    • @larswilms8275
      @larswilms8275 Рік тому +3

      Reminder: Diagrams and drawings are not to scale.😁

  • @JADENAME
    @JADENAME Рік тому +2

    Or you can use the property of the trigonometric function.
    let n²=k. sin²ø+cos²ø=1, so k/k³+k²/k³=1,
    1/k²+1/k=1; 1+k=k²; k²-k-1=0 (k>0)
    you made the quadratic equation.
    so k equals to (1±sqrt(5))/2.
    n>0, so k=(1+sqrt(5))/2. Finally you can square root the value of k. (because k=n².) Thank you.

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому +1

      You are a genius and so sweet my friend 🥰🥰♥️♥️♥️

    • @tharunsankar4926
      @tharunsankar4926 Рік тому

      Wtf use the Pythagorean theorem, same thing as what ever you wrote, what’s wrong with you????

    • @JADENAME
      @JADENAME Рік тому

      ​@@tharunsankar4926
      Using the one of the properties of trigonometric functions is to derive quadratic equations, and this process makes the answers more accessible. Also, I wanted to show that solving this problem is not limited to one way. Why are you mad?

    • @15jorada
      @15jorada Рік тому

      ​@_Heing_ yeah I agree that the guy you're replying to shouldn't be so mad.

  • @sachiya2
    @sachiya2 Рік тому

    divide both sides by n and complete square

  • @atastra
    @atastra Рік тому +1

    shrink each of the sides by n times. we get a right triangle of 1, n, n^2, thus n^4=n^2+1, solve this we can get the answer.

  • @عبدالرحمنالزايدي-ش1ر

    Second rejection 8:11 is not correct. As the answer can be positive also. I know this possibility was not neglected because the same value for n had appeared in the previous step. But mathematically it was not expressed rightly, I think.

  • @benachourmohsen4806
    @benachourmohsen4806 Рік тому

    Thanks

  • @jaisriram07007
    @jaisriram07007 10 місяців тому

    Truly a golden traingle

  • @timrichards589
    @timrichards589 Рік тому

    1.272….. would have been nice for you to plug the math back in and confirm the original equation in camera once you found the solution. Great video

  • @malvrin
    @malvrin Рік тому

    n=1.26 about n⁴ - n² - 1 = 0 fourth degree equation attributable to second degree

  • @girmagezahegn9715
    @girmagezahegn9715 Рік тому

    n has result decimal,could it be in practical the side length of a polygon triangle.

  • @QuentinStephens
    @QuentinStephens Рік тому

    By visual inspection of the thumbnail (as of writing) there is no positive real solution (not sure about complex solutions) as it mandates that n^3 > n > n^2

  • @canis_mjr
    @canis_mjr Рік тому +2

    Корень из золотого сечения, устно за прд минуты.

  • @abranadams1868
    @abranadams1868 Рік тому +1

    🎉

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend ♥️♥️♥️🥰🥰🥰

  • @soltanchalkarow905
    @soltanchalkarow905 Рік тому

    help please.
    if ab+bc+ca=1
    prove:
    sqrt( a + (1/a) ) + sqrt( b + (1/b) ) + sqrt( c + (1/c) ) >= 2( sqrt(a) +sqrt(b) + sqrt(c) )

  • @Kambyday
    @Kambyday Рік тому

    By Pythagoras theorem
    n²+n⁴=n⁶
    n²+n²n²=n⁶
    n²(1+n²)=n⁶
    1+n²=n⁴
    n⁴-n²+1=0
    Let n²=x, so we get
    x²-x+1=0
    By quadratic formula
    x=(1±√5)/2
    Meaning
    n²=(1±√5)/2
    n=√phi

  • @simonjupiter
    @simonjupiter Рік тому +1

    Interesting geometry! The answer works out to be the square root of the Golden Ratio

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend ♥️♥️♥️🥰🥰🥰

  • @Chaoswarrelt
    @Chaoswarrelt Рік тому +4

    The drawing isn't correct. It looks like side n^2 is smaller that n and side n^3 is larger than n and n^2

    • @atastra
      @atastra Рік тому +1

      that's also what i saw. n^3>n^2 thus, n>1, thus, n^2>n

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet ♥️♥️🥰🥰

    • @larryscott3982
      @larryscott3982 Рік тому

      Yeah. That made me initially consider n close to but less than 1.

    • @larswilms8275
      @larswilms8275 Рік тому

      drawings and diagrams are not to scale.

    • @larryscott3982
      @larryscott3982 Рік тому +1

      @@larswilms8275
      Of course. But this level of diagram didn’t exaggerate it is misleading.
      Of course n greater than 1 then n^2 is greater than n. But as a potentially tricky problem this diagram is not just ‘not to scale’.

  • @doubravka1833
    @doubravka1833 Рік тому +3

    Задача для восьмикласника....

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend 🥰🥰♥️♥️♥️

  • @keithrezendes6913
    @keithrezendes6913 Рік тому

    Don’t be scare homie, Nate Diaz

  • @robertlunderwood
    @robertlunderwood Рік тому +3

    n=0 is a legitimate solution. Not an interesting one, but legitimate.

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому +1

      You are a Roger and so nice♥️♥️🥰🥰

    • @timotim8722
      @timotim8722 Рік тому

      Nope. n is the length of this triangle’s side. So n > 0.
      That makes y (n^2) also > 0.
      So we have only one valid root - 1,272

    • @farqilion8747
      @farqilion8747 Рік тому

      ​@@timotim8722no one said there can't be a triangle with sides equal to 0 tho

    • @timotim8722
      @timotim8722 Рік тому

      @@farqilion8747 A dot?

    • @farqilion8747
      @farqilion8747 Рік тому

      @@timotim8722 technically yes.
      Just like circle is a regular polyhedron with infinite amount of sides, why not?

  • @007ITZA
    @007ITZA Рік тому +2

    Gotta love how side length n is shown as bigger than n2...

  • @user-sz3wx8on9h
    @user-sz3wx8on9h Рік тому

    Bu videoları çok seviyorum

  • @СержР-л6ш
    @СержР-л6ш Рік тому

    Зачётно. Класс

  • @거미남자_spidy
    @거미남자_spidy Рік тому +1

    Hmmmm....
    if n is not n∈Z can Langth be complex number?

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend ♥️♥️♥️🥰🥰🥰

  • @GUTY1729
    @GUTY1729 Рік тому +1

    Raíz cuadrada de fi

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend 🥰🥰♥️♥️♥️

  • @Cubowave
    @Cubowave Рік тому

    N²+n⁴-n⁶=0
    N²=t
    T+t²-t³=0
    T(1+t-t²)=0
    T=0 equivalant to n²=0 thus n = 0 or n=0 first 2 solutions
    Or
    1+t-t²=0
    T= (1±√5)/2
    N=±√(1±√5)/2
    4 more solutions

  • @спинерамигона
    @спинерамигона Рік тому +3

    Довольно простой пример для 11 класса я считаю

  • @anwesh_op3679
    @anwesh_op3679 Рік тому +1

    Why cant be n=1?????

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend ♥️♥️♥️🥰🥰🥰

    • @anwesh_op3679
      @anwesh_op3679 Рік тому

      @@TheMapofMathematics thank you ❤️❤️ love you dude

  • @PopPhyzzle
    @PopPhyzzle Рік тому +1

    Isn't that the square root of the golden ratio phi?

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому +1

      You are a genius and so sweet my friend 🥰🥰♥️♥️♥️

  • @gbkou
    @gbkou Рік тому +1

    n=1

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend ♥️♥️♥️🥰🥰🥰

  • @CrunchsterXX2
    @CrunchsterXX2 Рік тому +4

    Why just say rejected, its called an extraneous solution. A non real solution.

    • @S8EdgyVA
      @S8EdgyVA Рік тому +3

      It’s rejected by the assumption that n, it’s square, represents a length, which is necessary a real solution

    • @CrunchsterXX2
      @CrunchsterXX2 Рік тому

      But thats not how you do maths or come to conclusions via mathemtical solutions. Its wrong terminology ontop of that lol. @@S8EdgyVA

  • @Animal_2444
    @Animal_2444 Рік тому

    Прикольненько) ❤

  • @manojkantsamal4945
    @manojkantsamal4945 11 місяців тому

    n=1/2(1± root 5)

  • @Don.Franco_Film
    @Don.Franco_Film Рік тому

    Now, I'm scared!

  • @luanvoable
    @luanvoable Рік тому

    n=sqrt( (1+sqrt(5))/2)

  • @davew.5199
    @davew.5199 Рік тому

    Assuming it's valid to say the square root of zero is zero (I can't remember), then N can be 0. I doubt it can be any other exact value. If the result isn't exact, then you get an F. LOL

  • @RobertGabor
    @RobertGabor Рік тому +1

    Squfre root of phi.

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend 🥰🥰♥️♥️♥️

  • @aapkafan5681
    @aapkafan5681 11 місяців тому

    Is question me good tha kya
    This was very easy

  • @jeanpaullamont
    @jeanpaullamont Рік тому

    Usually "n" is for an integer
    So this problem has no interest

  • @КатяРыбакова-ш2д

    Примерно 1,27. Если точно, то V((1+V5)/2)

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      ♥️♥️🥰🥰

    • @ivan_577
      @ivan_577 Рік тому

      Можно заметить, что иностранцы не вычисляют дискриминант отдельно.

    • @DenWanDerEr
      @DenWanDerEr Рік тому

      ​@@ivan_577можно же в 1 действие всё сделать. Зачем отдельно его вычислять?

    • @kandar3795
      @kandar3795 Рік тому

      @@DenWanDerEr в школе учат вычислять отдельно, тк проще для восприятия. Лично меня приучили так и воспринимать в одно выражение мне сложно. Но тут уже как кому удобнее

  • @egyptian20091
    @egyptian20091 Рік тому +1

    Patagoen tiuram=Pythagoras theorem
    Scared=Squared
    Qadretic fun=Quadratic function
    Ecvayan=Equation

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend 🥰🥰♥️♥️♥️

    • @egyptian20091
      @egyptian20091 Рік тому

      @@TheMapofMathematics Oh thank you but why did you say that

  • @leetrask6042
    @leetrask6042 Рік тому +1

    I'm doing this solution in my head so why can't the solution be imaginary?

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet ♥️♥️♥️♥️🥰🥰🥰

  • @JBerne
    @JBerne Рік тому +1

    square root of the golden ratio

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому +1

      You are a genius and so sweet my friend 🥰🥰♥️♥️♥️

    • @JBerne
      @JBerne Рік тому

      @@TheMapofMathematics Thank you 😘

  • @Bertin-q3y
    @Bertin-q3y Рік тому

    n=( ( 1+5^0,5)/2)^0,5

  • @helluvastart
    @helluvastart Рік тому

    why n is scared ? n scared of who ?

  • @HB-oo9ty
    @HB-oo9ty Рік тому

    Doesn't look like an Olympiad peoblem. It's way straightforward for olympiad level problems.

  • @nabilmusleh5304
    @nabilmusleh5304 11 місяців тому

    n=1.272

  • @fluffyduck1944
    @fluffyduck1944 Рік тому +2

    Its a pity the answer has to be obscured by three random images.

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet ♥️♥️♥️♥️🥰🥰🥰

  • @daddykhalil909
    @daddykhalil909 Рік тому +1

    9:18 the problem is very interesting but the presentation is very dirty: bad handwriting, filthy board ....;

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend ♥️♥️♥️🥰🥰🥰

  • @PriyadarsanPJohnmeb
    @PriyadarsanPJohnmeb Рік тому

    1.272

  • @ayushmauryars
    @ayushmauryars Рік тому

    Bro solving with sketches and taking 9:34 minutes
    Meanwhile JEE adv aspirants solving that in mind laughing in the corner😂

  • @halimadaukenova9749
    @halimadaukenova9749 Рік тому

    Ответ3

  • @habibhaddad1000
    @habibhaddad1000 11 місяців тому

    c est faux des le debut , au lieux de n puissance 4 vous devais ecrire n a la puissance 3 dan l eq du second degres

  • @nuranbaltacioglu1265
    @nuranbaltacioglu1265 Рік тому +1

    Birim çember de bu islem yay uzunlugu hipotenus 1 + 1 =2 birimlik yeyi gorur bu ac dik acib90 derece

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend 🥰🥰♥️♥️♥️

  • @allanallansson9532
    @allanallansson9532 Рік тому

    Why is n so scared?

  • @Raistlin7070
    @Raistlin7070 Рік тому

    This is not a math olympiad problem at all

  • @arneldamba5908
    @arneldamba5908 Рік тому +1

    Moi je vois une erreur on devrait normalement avoir n²(n³-n²-1)=0 et non n²(n⁴-n²-1)=0

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend ♥️♥️♥️🥰🥰🥰

    • @nlbdp
      @nlbdp Рік тому

      Tout à fait d'accord ! Y'a une énorme erreur dans son calcul... 😂 😂 😂

    • @arneldamba5908
      @arneldamba5908 Рік тому

      @@nlbdp oui et cela a faussé tout ce qu'il ou elle a fait

    • @nlbdp
      @nlbdp Рік тому

      @@TheMapofMathematics We must be genious... But it seems you are not ! That's such a big mistake, could you suggest a good resolution for this equation ? Thanks !

  • @ghk27
    @ghk27 Рік тому +2

    n=0 within 2 seconds 😂

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet ♥️♥️♥️♥️🥰🥰🥰

  • @Hayet-jb2sd
    @Hayet-jb2sd 11 місяців тому

    Pythagore

  • @B.r.a.i.n_B.i.t.e.s
    @B.r.a.i.n_B.i.t.e.s Рік тому +1

    Hey, when you factorized n^6 you said it is n^2 times n^4 but this is n^8

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend ♥️♥️🥰🥰

    • @francescomartino436
      @francescomartino436 Рік тому

      You do not multiply powers, powers are added 2^2(2^4)=4×16=64 not 2^8=128.

    • @SanjeeveRao
      @SanjeeveRao Рік тому

      Exactly. Any answer he gets after this mistake will be wrong

    • @fusuyreds1236
      @fusuyreds1236 Рік тому

      Lmao are you roasting him​@@TheMapofMathematics

    • @fusuyreds1236
      @fusuyreds1236 Рік тому

      exponents are added when multiplying terms, and multiplied when a term is raised to another exponent

  • @angharaddenby3389
    @angharaddenby3389 Рік тому +1

    Never mind WHAT n is - let's address your spelling. The word is MATHS - it has an s at the end. Please GET IT RIGHT.

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      Yes I Noted my mistake.
      You are a genius and so sweet my friend ❤️❤️🥰🥰

    • @pracha95
      @pracha95 Рік тому

      In USA, it is Math

  • @jackgerberuae
    @jackgerberuae Рік тому

    Lots of substitutions and rejections which does not look mathematically correct.
    Just swop n=1, and the answer will be 1
    👍

    • @larswilms8275
      @larswilms8275 Рік тому +1

      Show me your right angled triangle with equal sides of length 1 unit?
      The hypotenuse of a right angled isosceles triangle with side 1 is the square root of 2. (a^2 + b^2 = c ^2 --> 1^2 + 1^2 = 2 --> c = sqrt(2))

    • @jackgerberuae
      @jackgerberuae Рік тому

      @@larswilms8275 there you go. See you solved it with 1 🥸

  • @Lord_Volkner
    @Lord_Volkner Рік тому

    I like how he says "scared" instead of "squared".

  • @ouTube20
    @ouTube20 Рік тому

    Wrong!

  • @Hayet-jb2sd
    @Hayet-jb2sd 11 місяців тому

    Oui ce n'est pas logique

  • @recepduzenli3263
    @recepduzenli3263 Рік тому +1

    Amaçsız anlamsız saçma sapan işlem dolu.olimpiyat seviyesinde bir soru değil

    • @TheMapofMathematics
      @TheMapofMathematics  Рік тому

      You are a genius and so sweet my friend ♥️♥️♥️🥰🥰🥰

  • @ibrahimmeteoglu320
    @ibrahimmeteoglu320 Рік тому

    bro you re so slow

  • @xiongcaizhu9315
    @xiongcaizhu9315 Рік тому

    silly

  • @timbond6176
    @timbond6176 Рік тому

    Primitiv

  • @brurer9358
    @brurer9358 Рік тому

    🤮💩👎