How many roots? Rouché's Theorem

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 85

  • @ingiford175
    @ingiford175 10 місяців тому +4

    One thing he does not make clear at around 4:35 you are only looking for dominance at the boundary, because on the inside of the function where you are looking for roots, the 1 will eventually take dominance as you get closer and closer to the zero if you are looking at the area. But we only need to prove it for the boundary for the theorem, which is why it is so powerful.

  • @HerndonMath
    @HerndonMath 3 роки тому +28

    Exam writers love this theorem! You just saved so many students from attempting to solve for the roots during the test!

  • @GUINAMarcel
    @GUINAMarcel 3 роки тому +17

    The Ferrero Rouché joke rocks! I couldn't believe my eyes when I saw this new video just now while I was solving a problem using this theorem :)) Thanks a lot!!!

    • @drpeyam
      @drpeyam  3 роки тому +4

      Nice!

    • @GUINAMarcel
      @GUINAMarcel 3 роки тому +2

      The problem is : Prove that all the roots of z^7 - 5 z^3 + 12 = 0 lie between the circle |z| = 1 and |z| = 2

    • @drpeyam
      @drpeyam  3 роки тому +4

      Amazing, it’s so similar to this video!

    • @reeeeeplease1178
      @reeeeeplease1178 3 роки тому

      Actually got an ad for it although i never get candy/... ads

  • @route66math77
    @route66math77 3 роки тому +9

    Complex Analysis is so beautiful! Great presentation of a classic result -- thanks Dr. Peyam!

  • @utilizator1701
    @utilizator1701 3 роки тому +10

    Interesting theorem. The best I was able to say about this is not all the roots are in |z|

  • @mht5749
    @mht5749 3 роки тому +1

    A friend of mine came up to me with this exact setup for a problem some months ago but couldn't even find something related and now you upload it as a casual thing. You're doing god's work

  • @utilizator1701
    @utilizator1701 3 роки тому +6

    It is a mistake at 9:12. It should be 3*z^2=-z^5-1, not 3*z^2=z^5-1. Even though, the conclusion is true.

  • @Mahlodi_Makobe
    @Mahlodi_Makobe Рік тому +1

    You've managed to demystify such a simple concept. Thank you

  • @VS-is9yb
    @VS-is9yb Рік тому

    At 4:40 it should've written |z|^5+1

  • @halodragon110
    @halodragon110 3 роки тому +3

    This is one of my favourite results in complex analysis, grar video!!! Also, anyone else notice the fly enthusiast of maths at 4:26 ?

    • @reeeeeplease1178
      @reeeeeplease1178 3 роки тому

      Isnt that step incorrect? How can 3=|3z^2| when 1>|z|

    • @martinepstein9826
      @martinepstein9826 3 роки тому

      @@reeeeeplease1178 At that step 1 = |z|, not 1 > |z|. Even though the theorem tells you about roots _inside_ the region, the conditions to use the theorem involve z on the _boundary_ of the region.

  • @sardineman8994
    @sardineman8994 3 роки тому +6

    Love your videos

  • @amittrivedi9575
    @amittrivedi9575 2 роки тому +1

    Love the way you made me understand

  • @DynamicMateTV
    @DynamicMateTV 3 роки тому +3

    Complex analysis was fun :)

  • @UltraMaXAtAXX
    @UltraMaXAtAXX 3 роки тому +2

    I remember the exam for undergrad complex variables I took had an application of Rouche, but I couldn't find the perturbing function. It's a nice result, but I have issues using it correctly.

    • @drpeyam
      @drpeyam  3 роки тому +2

      It’s hard to be honest!

  • @piyalikarmakar5099
    @piyalikarmakar5099 2 роки тому

    You are really great just cleared all my concepts how to attempt such problems

  • @puerulus
    @puerulus 3 роки тому +2

    Technically, there is an explicit formula for the roots of the general quintic polynomial, but it's in terms of Jacobi theta functions.

    • @gasun1274
      @gasun1274 3 роки тому

      really? never heard of this before. any links?

    • @puerulus
      @puerulus 3 роки тому

      @@gasun1274 It's mentioned in the article on Wolfram MathWorld about the quintic equation. UA-cam deletes my comment when I try to post a link to it.

    • @dlevi67
      @dlevi67 3 роки тому

      @@gasun1274 Also - on Wikipedia under "quintic function"

  • @dohyun031
    @dohyun031 3 роки тому +1

    Yay complex analysis!

  • @theproofessayist8441
    @theproofessayist8441 3 роки тому

    @0:05 Dr. Peyam, I'm not sure if accidental but your phrasing got me thinking of Voldemort memes in my head. hahaha! :)

    • @drpeyam
      @drpeyam  3 роки тому

      Accidental haha

  • @spudmcdougal369
    @spudmcdougal369 3 роки тому +3

    How did Cauchy not have his name on this? Did he owe Rouche’ money?

  • @DoctrinaMathVideos
    @DoctrinaMathVideos 3 роки тому +2

    Rouché theorem is kind of the intermediate value theorem for complex functions. :)

    • @ingiford175
      @ingiford175 10 місяців тому

      Yep, you look at the boundary and know stuff about the 'inside'. Very powerful.

  • @رشاداليامي
    @رشاداليامي 3 роки тому

    This video is name “ King your videos “
    theorem is interesting
    Thank you for your efforts

  • @juanmolinas
    @juanmolinas 3 роки тому

    Thank you Dr!, nice videos!

  • @thomasborgsmidt9801
    @thomasborgsmidt9801 3 роки тому +2

    Now this is incredibly interesting to me - and I will have to watch several times before an algorithm kicks in.
    This is interesting because it (with present days interest rates) the internal value of f.i. an annuity might have several roots. Further complicated by the fact that the interest rate is depending on (proposed) of raise in productivity and inflation - and nothing else.
    But the practical implication? I don't think it will have one, as economics professors - from experience are mathematically illiterate.

    • @thomasborgsmidt9801
      @thomasborgsmidt9801 3 роки тому

      The problem with bankers is that they really don't know, what they are doing (at the best of times). If I only leaned on the math I learned in University - then I would be in bad shape - just like my costudents.
      Will the situation be corrected? Nope, and definately not by me - I have no desire to be admired by bacteria brains.

  • @bernieg5874
    @bernieg5874 3 роки тому

    At 4:40 you have 3=|3z^2| which is wrong because |z|

    • @drpeyam
      @drpeyam  3 роки тому

      Not true, |z| = 1

    • @bernieg5874
      @bernieg5874 3 роки тому

      @@drpeyam It says "CASE 1 |z|

    • @davaariantara3704
      @davaariantara3704 3 роки тому

      there's nothinf wrong, you need to compare the |f| & |g| at the boundary of the region

    • @uwukia
      @uwukia 3 роки тому +1

      I'm also struggling with that
      because he considered |z|^5 + 1 < 1 + 1
      but if |z| = 1, then |z|^5 = 1, and therefore |z|^5 + 1 = 1 + 1
      I feel stupid because everyone is accepting it, yet I don't see it clearly how is it true

  • @dstigant
    @dstigant 3 роки тому +3

    Usually in complex analysis, we are concerned with holomorphic functions… is that a necessary condition to this theorem?

    • @drpeyam
      @drpeyam  3 роки тому

      Of course

    • @adityaekbote8498
      @adityaekbote8498 3 роки тому

      Whats that

    • @PackSciences
      @PackSciences 3 роки тому +3

      For Rouché's theorem, the minimum requirement is:
      - U an open simply connex, subset of C.
      - f and g meromorphic in U
      - Gamma simple loop (the boundary of your compact)
      If |f(z)-g(z)| < |g(z)| in all point of gamma, then:
      zeroes(f)-poles(f) = zeroes(g) - poles(g)
      Here, Peyam used a result derives from it that has the particularity of having no poles. (and obviously the criterion of meromorphic functions is respected, as all rational functions verify it).
      I really encourage people to at least read the Wikipédia article that isn't super long.

    • @theproofessayist8441
      @theproofessayist8441 3 роки тому +4

      @@adityaekbote8498 You can check Dr. Peyam's videos for more clarification but holomorphic is the way for saying a complex number valued function is differentiable. It's basically the limit definition of differentiation for complex numbers. It's insanely powerful in the following result if you can prove a function is complex differentiable once you can prove it is infinitely differentiable and in case you are looking at @PackSciences explanation: meromorphic means the function is complex differentiable EXCEPT at isolated points/poles. Feel free to correct me if I'm wrong but from my viewing of complex analysis videos poles behave like the "dreaded cusp points" that screw everything up in normal calculus/real analysis.

  • @patipateeke
    @patipateeke 3 роки тому

    Very nice! Thank you!

  • @dgrandlapinblanc
    @dgrandlapinblanc 2 роки тому

    Thank you very much.

  • @reinerwilhelms-tricarico344
    @reinerwilhelms-tricarico344 3 роки тому +1

    Nice. But how do you prove Rouché’s theorem in general?

  • @henryginn7490
    @henryginn7490 3 роки тому

    At 4:36, I don't see how that can be true. f(0)=0, and g(0)=1

    • @drpeyam
      @drpeyam  3 роки тому

      On the boundary, not the whole set

  • @rikthecuber
    @rikthecuber 3 роки тому

    Dear Dr. Peyam.
    I am not able to understand that in which questions to use complex numbers and where not to.
    I am in class 11 and we havr learnt complex numbers. While doing quadratics and other polynomials we use it for solutions. But while finding domain and range and in all of Calculus we use, we do not use it.
    So when do I use it and when not?
    eg. Say sinx=2 has not real solution but its possible using complex numbers.

  • @rogerkearns8094
    @rogerkearns8094 3 роки тому +1

    _Ferrero Rocher_
    Where a layer of foil defines a boundary? ;)

  • @is_math_hard
    @is_math_hard 7 місяців тому

    Thank You 😀

    • @drpeyam
      @drpeyam  7 місяців тому

      You're welcome 😊

  • @RGAstrofotografia
    @RGAstrofotografia 3 роки тому +1

    If there are 5 roots in this circle but you can't find any, do they really exist?

  • @LifeIsBeautiful-ki9ky
    @LifeIsBeautiful-ki9ky 4 місяці тому

    why you dont prove given equation has no zeros on |z|=2

  • @kumarpriyeshmaths
    @kumarpriyeshmaths 6 місяців тому

    Love from india ❤

  • @yoav613
    @yoav613 3 роки тому

    Very nice😀

  • @josephhajj1570
    @josephhajj1570 3 роки тому +2

    Proof please

  • @purim_sakamoto
    @purim_sakamoto 3 роки тому

    留数定理の話かと思ったけどなんか違うね・・・
    もちょっと勉強しときます!

  • @realcirno1750
    @realcirno1750 Рік тому

    this video made this theorem click for me!

  • @PAWANKUMAR-km4sl
    @PAWANKUMAR-km4sl 3 роки тому

    Best sir

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому

    Dear Peyam
    Have you ever met professor Maryam Mirzakhani?

    • @drpeyam
      @drpeyam  3 роки тому +4

      I did

    • @user-wu8yq1rb9t
      @user-wu8yq1rb9t 3 роки тому

      @@drpeyam Really?!!
      خوش بحالتون (Good for you).
      Please one day talk about your experience with professor Maryam Mirzakhani and also talk about her research and ... .
      Thank you

    • @drpeyam
      @drpeyam  3 роки тому +4

      I only said hello to her

    • @user-wu8yq1rb9t
      @user-wu8yq1rb9t 3 роки тому

      @@drpeyam
      It's still great, because I don't have even this experience!
      But if it's possible for you, make a video about her research.
      Thank you

    • @user-wu8yq1rb9t
      @user-wu8yq1rb9t 3 роки тому

      @@drpeyam In my opinion talk a bout Professor Mirzakhani and her research can be one of the greatest subjects for your video. And you're one of the best person for doing this, because you're mathematician and also Iranian.

  • @admink8662
    @admink8662 3 роки тому

    How can 3z² has 2 roots?

    • @drpeyam
      @drpeyam  3 роки тому

      It has a root of 0 with multiplicity 2

    • @admink8662
      @admink8662 3 роки тому

      @@drpeyam aha, alright

  • @adityaekbote8498
    @adityaekbote8498 3 роки тому

    Soo cool

  • @souhardyasarkar6255
    @souhardyasarkar6255 3 роки тому

    One doubt. I thought we should check for, on lzl= 2 we have roots or not,but instead you checked for lzl=1and subtract that from 3, but the answers will be same cause two different parts(z^5 and 3z^2+1)will never have same mod value on lzl=2 so they can't cancel each other.

  • @xenorzy9331
    @xenorzy9331 3 роки тому

    nice

  • @ajiwibowo8736
    @ajiwibowo8736 3 роки тому

    Is this like Descartes Rule of Sign but in the Complex World XD

    • @drpeyam
      @drpeyam  3 роки тому +1

      I never thought of it that way, wow!!!

  • @vnever9078
    @vnever9078 3 роки тому

    You're op

  • @friedrichfreigeist3292
    @friedrichfreigeist3292 3 роки тому

    Based

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому

    Hello Dear Dr Peyam.
    No roots but my ...😀😀
    Such nice math problem, I like that.
    Thank you

  • @egillandersson1780
    @egillandersson1780 2 роки тому

    I don't understand : in the case where ∣x∣ < 1, if you take, for exemple, x = 0.5, then f(x) = 0.75 and g(x) = 1.03125, so g(x) > f(x)
    I know I'm wrong, but where ?