But I AM joking, Mr. Feynman!

Поділитися
Вставка
  • Опубліковано 22 гру 2024

КОМЕНТАРІ • 196

  • @Galileosays
    @Galileosays 4 роки тому +114

    So the result is not normal, but nearly perfect (Peerfc(1)).

    • @drpeyam
      @drpeyam  4 роки тому +19

      😂😂😂

  • @puerulus
    @puerulus 4 роки тому +64

    The differentiation under the integral sign technique is covered in many calculus textbooks from the 1800s and early 1900s. Richard Feynman himself pointed that out. He probably wouldn't have wanted the technique named after him.

    • @euva209
      @euva209 2 роки тому +1

      An example of watering down the curriculum? I'm sure it's an isolated case.😁

  • @UnforsakenXII
    @UnforsakenXII 4 роки тому +128

    I remember being obessesed with these kind of integrals back in sophomore year of undergrad, needless to say, it paid off tremendously and I wish it was taught more standardly at least in physics curricula.

    • @jacobharris5894
      @jacobharris5894 3 роки тому +8

      I’m still obsessed with them now but I learned it pretty recently. Whenever I see a hard looking integral I try to find any excuse I can to use it.

    • @SimsHacks
      @SimsHacks 2 роки тому +1

      it's a theorem usually covered in Measure theory. Sadly physicians don't often have this course.

  • @Lupercus-ht1xt
    @Lupercus-ht1xt Рік тому +1

    You're an awesome professor. I laughed a lot and the problem was interesting. Thanks

  • @thelink9959
    @thelink9959 4 роки тому +9

    That french was spot-on and so was the math.

  • @noonesperfect
    @noonesperfect 4 роки тому +17

    new generation is so lucky to have these videos around. It really helps a lot you cant imagine , thx to prof. :)

  • @AnkitSharma-ef7md
    @AnkitSharma-ef7md 4 роки тому +7

    While others get to read early morning text from their sweet and loved ones, I get a notification from youtube that Dr. Peyam has uploaded another astonishing problem from mathematics.
    So good to see you professor,
    Amazing approach.
    I was puzzled at the step where you nicely adjusted the error function.
    Loved it.
    Seasonal greetings to you.

  • @naveensagar2408
    @naveensagar2408 4 роки тому +3

    Integration under diff followed by lebini t' z rule feynman technique is very awsome ! being a masters in physics i can tell only 1 thing this technique is very useful in solving the famous dirichlet integrals . & Many problems in physics.

  • @hOREP245
    @hOREP245 4 роки тому +10

    One of my favourite integrals! This can be easily extended using the Gamma and Incomplete function for any n>0 (where this is the special case n = 2).

  • @6612770
    @6612770 3 роки тому +1

    Congratulations, you have pleasantly blown my mind again.
    Thank you! 🙂

  • @mudkip_btw
    @mudkip_btw 4 роки тому +7

    Living dangerously pays off, that's why I like it :} Though I feel like it's getting time for me to learn the proper theorems at this point, like dominated convergence as you talked about. I did quite badly in my calculus 1, 2 classes but much better later, once we got to vector calculus etc. since I'm more of a visual learner. Glad to have people like you around to keep me interested in proper maths as a physics student :)

  • @Chariotuber
    @Chariotuber 4 роки тому +31

    nothing tickles my fancy more than math with fun jokes in other languages!

  • @colonelburak2906
    @colonelburak2906 4 роки тому +3

    I'm a PhD student in applied maths, and I still learn so much from your videos, Dr. Peyam!
    The French saying we have in Sweden as well:
    Varför göra något enkelt när man kan göra det svårt?

  • @vai_-cn9br
    @vai_-cn9br 4 роки тому +1

    That was beautiful. Thanks for sharing this sir :)

  • @integralboi2900
    @integralboi2900 4 роки тому +54

    Leibniz: Am I a joke to you?

  • @spintwohalves
    @spintwohalves 4 роки тому +1

    Another wonderful video. Thanks Dr.πm!

  • @77Chester77
    @77Chester77 4 роки тому +18

    13:37 😁
    Sie gehen mir NIE auf die Nerven, Dr πm

    • @drpeyam
      @drpeyam  4 роки тому +1

      Hahahaha

    • @thomasborgsmidt9801
      @thomasborgsmidt9801 4 роки тому +1

      Ich glaube Du hast im Schwarzen getroffen! πm does not need to make the student feel like an idiot - but he points out and lets the student decide for himself, that maybe he has to reevaluate. Math is - like all sciences - not about finding answers, but finding the relevant question.
      It is like Kepler that just asked himself: Does planetary orbits HAVE to be circular? Well, they don't - the concept of circular orbits was made to make calculations simpler - and elipses do not have a rough and ready formula for the length of the circumfence.
      But then again the quest for making a simple circular equations valid led to a religious conviction that was much more complicated as an end result.

  • @joaquingutierrez3072
    @joaquingutierrez3072 4 роки тому +1

    Nice video!!! Thank you!! Amazing technique

  • @uxueanderealdazabal128
    @uxueanderealdazabal128 2 роки тому

    Gracias por sus vídeos... Manos a la obra

  • @muratkaradag3703
    @muratkaradag3703 4 роки тому +4

    11:16 I didnt know that you speak german ;)
    Lots of love From Germany Berlin!.
    THanks for showing your Magic to us

  • @GRBtutorials
    @GRBtutorials 4 роки тому +17

    I was so confused at the beginning... you’re probably the only UA-camr who says “thanks for watching” at the beginning of the video instead of at the end!

  • @plnmech
    @plnmech 4 роки тому +5

    You went way over my head but one thing I learned is that you are afflicted with the same disease that I am, you are left handed.

  • @alphaglucopyranose6928
    @alphaglucopyranose6928 4 роки тому +5

    Or just use residue integral and integrate on a semicircle on the upper half plane. The function has a simple pole at z=i. Plug in z=i into 2πi*e^(-z^2)/(z+i). We get πe.

    • @theelk801
      @theelk801 2 роки тому

      which is incorrect

  • @alexdemoura9972
    @alexdemoura9972 4 роки тому +31

    In Portuguese:
    "Por que simplificar,
    se se pode complicar?" 😁

    • @TheTKPizza
      @TheTKPizza 4 роки тому +9

      Warum einfach, wenn es auch kompliziert geht? - German

    • @morgard211
      @morgard211 4 роки тому +5

      Proč dělat něco jednoduše, když to jde složitě? - Czech

    • @agfd5659
      @agfd5659 4 роки тому +2

      @@morgard211 přesně jsem to teď chtěl napsat :D

    • @drpeyam
      @drpeyam  4 роки тому +8

      I love how we all have the same saying 😂

    • @souhilaoughlis5832
      @souhilaoughlis5832 4 роки тому

      ''ⴰⵢⵖⴻⵔ ⴰⴷ ⵜⵏⴻⵔ ⴷ ⵍⵉEⴰ ⵎⴰ ⵏⴻⵣⵎⴻⵔ ⴰⴷ ⵜⵏⴻⵔ ⴷ ⴰⵙⴰⵡⴻⵏ ''In Tamazight

  • @marinmaths3826
    @marinmaths3826 4 роки тому

    Amazing Dr Peyam. I love Feynman’s technique. Very cool

  • @joeremus9039
    @joeremus9039 2 роки тому

    Thanks. I really enjoy your videos.

  • @MrRyanroberson1
    @MrRyanroberson1 4 роки тому

    Erf(1) is such an underrated constant and really puts things into perspective when working wuth statistics. Erf(1)*2 many people lie withing just one standard deviation of the average, and so on, as a fundamental definition.

  • @channalbert
    @channalbert 4 роки тому +10

    By instinct, maybe biased by "Feynman" in the title, I tried to find the most direct way to apply Feynman's trick, and I came up with multiplying outside the integral by e and inside by e^-1. The latter, together with e^(-x^2) in the integrand form e^[-(1+x^2)] and you can now see an easy parametrization to do the trick: e^[-a(1+x^2)] with the limits from 1 to infty.

  • @CoffeeTroll
    @CoffeeTroll 4 роки тому +4

    1:13 I love this saying ❤️

  • @umerfarooq4831
    @umerfarooq4831 4 роки тому +1

    The title of the video got me lol the equation was amazing as well

  • @ahmedgaafar5369
    @ahmedgaafar5369 4 роки тому

    i agree this was very beautiful integral and astonishing result.

  • @emiliomontes2043
    @emiliomontes2043 4 роки тому

    ¡Manos a la obra! , cordiales saludos Dr. U should make videos talking bout' Fourier transform !!! I love your work :)

  • @chriswinchell1570
    @chriswinchell1570 4 роки тому +3

    Hi Dr. Peyam, I accept your challenge to make things worse:
    1. Expand 1/(x^2) in a series and integrate against guassian function. You get an infinite sum of alternating even moments. (A sum of gamma functions, I think.)
    2. Expand the guassian and integrate against the Cauchy distribution so you get a sum of moments of Cauchy.
    3. Find the integral of the inverse Fourier transform of the convolution of guass and Fourier transform of Cauchy (It’s something like e^-abs(x)). I wonder if this works out better than it sounds.
    4. Things aren’t always difficult, remember: toujours aimer le vent qui leve les joupons.

  • @itswakke
    @itswakke 3 роки тому +2

    The most trouble I have with these is: how do I decide where the “a” term goes?

    • @drpeyam
      @drpeyam  3 роки тому +4

      It’s an art, there’s no reason why the a should be at a specific point

  • @ny6u
    @ny6u 3 роки тому +1

    beautiful 👏🏻👏🏻👏🏻

  • @chemistrychamp3369
    @chemistrychamp3369 Рік тому

    Thanks amazing integration. I Never really know using this method, when u integrate for da how to put the limits of the integrale and why…

  • @paulg444
    @paulg444 4 роки тому

    The first thing I would do is bound that integral by putting x=0 in the denominator term (1+x^2)=1. .. that way I have a quick relation with the ERF function, proceed then to solve and then I double check that my solution does not exceed the upper bound. Else Ive got so many moving parts that I dont know if Im right at the end or if I made a few teen mistakes !

  • @bernardlemaitre4701
    @bernardlemaitre4701 4 роки тому +1

    jolie démonstration !

  • @vivelesport8197
    @vivelesport8197 4 роки тому +4

    Best and fast...
    I remember a long bad proof in university....

  • @maxsch.6555
    @maxsch.6555 4 роки тому +1

    I tried to solve this integral by myself. I introduced the factor e^(-a(1+x^2)) in the integrand and used feynmans trick. I defined f(a) to be the integral from 0 to inf of e^(-x^2)/(1+x^2) * e^(-a(1+x^2)) dx. Notice that the integral we want is 2f(0). For f'(a) i got -sqrt(pi)/2 * e^(-a)/sqrt(1+a). To get the original function f(a) I integrated from inf to a. I could express f(a) using the incomplete gamma function: f(a) = sqrt(pi)/2 * e * gamma(1/2, 1+a)
    So the original integral is 2f(a) = sqrt(pi)*e*gamma(1/2, 1)
    If we use the relation between the incomplete gamma function and the error function we get the same answer as in the video. :)

  • @adritobiswas1982
    @adritobiswas1982 2 роки тому

    That x square + 1 in the denominator was looking sooo delicious.

  • @quinktap
    @quinktap 4 роки тому

    Is the error function complimentary? What is important here? Understanding Euler's equations or perhaps his thoughts on expressing his understanding?

  • @bprpfast
    @bprpfast 4 роки тому +1

    Love from SoCal

  • @triton62674
    @triton62674 4 роки тому +6

    German, French *and* Spanish?! Surely you're joking Dr. Peyam??

  • @peterdecupis8296
    @peterdecupis8296 2 роки тому

    This brilliant example paradoxically highlights that the success of Feynman method is critically dependent on a "fortunate" guess of the parametric generalization of the integrand function.

  • @ericpham8205
    @ericpham8205 3 роки тому +1

    If use i^2 as -1

  • @luna9200
    @luna9200 4 роки тому

    Nice application of this that I thought of: If you do the same thing but with sin(x^2)/(1+x^2), you differentiate twice and use the Fresnel Integrals, and you get a second order ODE! A nice answer comes out if you're willing to use the Fresnel S and C functions.

  • @mlgswagman6002
    @mlgswagman6002 Рік тому

    Nice, took a similar approach but it doesn't go through the differential equation route.
    Let I(a) = integral from -inf to inf of (e^(a(-x^2-1)) / (x^2 + 1))
    Note that e*I(1) is the desired integral.
    Differentiating under the integral now completely destroys the denominator.
    I'(a) = -sqrt(pi)/(e^a * sqrt(a))
    Now, just directly solve for I(a) using that lim as a -> inf I(a) = 0.
    You can do some trickery with integration by parts and a substitution to get the same result you did.

  • @acac7353
    @acac7353 4 роки тому +1

    Manos a la obra!! Jejeje... Saludos desde Andalucía (España)

  • @akirakato1293
    @akirakato1293 2 місяці тому

    but doesnt a=-1 also get back the original integral, the final evaluation will be different though since erf(-1)=-erf(1)

  • @shreyashegde4032
    @shreyashegde4032 3 роки тому

    Your voice feels as if my friend is talking to me😄. Love your presentation

  • @meiwinspoi5080
    @meiwinspoi5080 4 роки тому

    may post a video on numerical calculation og error function

  • @mertaliyigit3288
    @mertaliyigit3288 4 роки тому +3

    I love how bottom left of the board dances on 720p60

    • @drpeyam
      @drpeyam  4 роки тому +2

      I know, it’s so weird it does that 😂

  • @thomasborgsmidt9801
    @thomasborgsmidt9801 4 роки тому +4

    Hmmm... the gauss'ian integral is so very close to being just a constant.

  • @the_nuwarrior
    @the_nuwarrior 4 роки тому +1

    What criteria should be used to know where to enter the parameter?

  • @AndDiracisHisProphet
    @AndDiracisHisProphet 4 роки тому +3

    11:10 es geht eher an die Perven, oder? :D

  • @bruwayn2158
    @bruwayn2158 3 роки тому

    we can also solve the 1st order differential equation : f'(a)-2a f(a) = -2square(Pi)

  • @tgx3529
    @tgx3529 4 роки тому

    Dr Peyam, please , what is the result for this integral.We are not able get primitiv function for integral exp-x^2 from -infinity till a.
    I am not sure, mabye I can take origin integral as e* integral from (exp -(1+x^2))/(1+x^2), and then calculate integral f(a) =exp (-a(1+x^2))/(1+x^2), there will be cancel (1+x^2) for f'(a).... , but I am not sure, if this way is OK

  • @AstroB7
    @AstroB7 4 роки тому +1

    As a French Canadian person, I found your accent wonderful !! Did you take any french class ?

    • @drpeyam
      @drpeyam  4 роки тому

      I went to a French Lycée :)

    • @AstroB7
      @AstroB7 4 роки тому

      @@drpeyam oh that’s fantastic, french is a very hard language ! It’s always nice to see your great content ! Keep up the good work !

  • @jesusalej1
    @jesusalej1 4 роки тому +1

    There is always beauty in maths!

  • @peterchindove7146
    @peterchindove7146 2 роки тому

    Brilliant!

  • @alexcaesar5377
    @alexcaesar5377 4 роки тому

    What a easy equation! It is a piece of cake.

  • @ismailaitabdelkarim7164
    @ismailaitabdelkarim7164 Рік тому

    6:13
    you made things complicated. It is a differential equation of order 1 which is very simple to solve.

  • @mihalymarkocserpak5437
    @mihalymarkocserpak5437 4 роки тому

    Hey everyone! Could somebody please explain the step at 3:28? I dont seem to get how dividing by the 1+x^2 term leads to the following equation.

    • @tcoren1
      @tcoren1 4 роки тому

      He splits the x^2+1-1 into two terms, x^2+1 and the number -1, and then splits the integral into two integrals, one for each term.
      For the first term the x^2+1 cancels with the 1+x^2 in the denominator, and the second term ends up just being the initial integral that defines f(a) just with a factor multiplying it

  • @KarlMarX_93
    @KarlMarX_93 4 роки тому +1

    Awesome! Great video before going to the job. 😂

  • @adityaekbote8498
    @adityaekbote8498 3 роки тому

    Hey what whiteboard do you use?

  • @shanmugasundaram9688
    @shanmugasundaram9688 4 роки тому

    Very nice presentation.

  • @dihinamarasinghe9278
    @dihinamarasinghe9278 Рік тому

    Can this be solved using complex analysis? If so can you upload a video on it too

    • @drpeyam
      @drpeyam  Рік тому +1

      Maybe, you come up with a solution :)

  • @alwysrite
    @alwysrite 4 роки тому

    when you did f(a) why did you only put 'a' in numerator and not denominator? Denominator also had an 'x' term?

    • @drpeyam
      @drpeyam  4 роки тому

      It would make it more complicated! Putting a once is simple yet already solves our problem

  • @BaoNguyen6742
    @BaoNguyen6742 4 роки тому

    If you substitute a as -1 can it still give the same answer like this

  • @waleedalzamil2228
    @waleedalzamil2228 4 роки тому

    Can you please recommend a good reference to study math...?and to understand more please...

  • @g-smith4466
    @g-smith4466 4 роки тому +1

    Actually what is the meaning of " why do something simply, when it can be done in a more complicated way?" It hits home somehow, but I am not sure I get it right.

  • @petervinella5545
    @petervinella5545 3 роки тому

    Feyman’s idea is very similar to the calculus of variations as discussed in Evan’s PDE textbook

  • @arupabinash2263
    @arupabinash2263 4 роки тому

    I love this method

  • @superkarnal13
    @superkarnal13 4 роки тому +1

    Bellísimo

  • @guill3978
    @guill3978 4 роки тому

    One question, is the number Ei(1) a transcendental number?

  • @physicsboy3108
    @physicsboy3108 4 роки тому

    Can be solved by using and Gamma or Beta function!!!🤩

  • @LucPatry
    @LucPatry 3 роки тому +1

    mathematics done beautifully

  • @shibhanlalpandita6975
    @shibhanlalpandita6975 4 роки тому

    Explain the problem. Y can't you put it integral where numerator is 1?

  • @quinktap
    @quinktap 4 роки тому +1

    Belief has no function here

  • @DynestiGTI
    @DynestiGTI 4 роки тому

    Can all integrals be turned into differential equations like this?

  • @stochasticxalid9853
    @stochasticxalid9853 Рік тому

    Pourquoi faire ça si on peut faire compliqué ? Vamos a la obra ! Delicious Pi ! Es geht mir auf die Nerven! ....Love u doc.❤

  • @guill3978
    @guill3978 4 роки тому

    Is that constant, the result of the integral, a transcendental number?

  • @irshadsirslectures4446
    @irshadsirslectures4446 4 роки тому

    Please make a vedio on design of experiments

  • @quinktap
    @quinktap 4 роки тому

    Can you provide a proof?

  • @YWanek-ft2fs
    @YWanek-ft2fs 4 роки тому +2

    Es geht mir auf die πERF(en).
    Haha greetings from Germany 🇩🇪

  • @thomasfritz8174
    @thomasfritz8174 2 роки тому

    And the function f(a) actually has a name: it is the Faddeeva function w(iz) , well exactly it is f(a) = w(ia). I deal with the Faddeeva fct. very often.

  • @yaskynemma9220
    @yaskynemma9220 Рік тому

    The answer almost says "perfect"

  • @camilocastrojimenez8612
    @camilocastrojimenez8612 3 роки тому

    Saludos, muy interesante el video.

  • @davidsweeney111
    @davidsweeney111 4 роки тому

    does minus infinity (or infinity for that matter) have any meaning?

    • @Brad-qw1te
      @Brad-qw1te 4 роки тому

      Those are the bounds of the integral. If he wanted to he could evaluate the function between those two x values finding the area

    • @alejandroduque772
      @alejandroduque772 4 роки тому

      The correct thing is to take a finite upper/lower limit, and then take the limit as those grow to +- infinity respectively.

  • @PhilesArt
    @PhilesArt 4 роки тому +1

    I'm french and I was confused when u started talking french xD

  • @karabodibakoane3202
    @karabodibakoane3202 3 роки тому

    Is Dr. Peyam really doing calculations in the kitchen? I thought the kitchen was meant for cooking, but no, I was wrong.

  • @ilovephysics350
    @ilovephysics350 4 роки тому +1

    Set 1 to "t". That would be perfect.

  • @yashagrahari
    @yashagrahari 3 роки тому

    Nice integral

  • @nournote
    @nournote 4 роки тому

    But Erfc(1) is different from Erfc(-1).
    Could we replace a=-1?

    • @joao_pedro_c
      @joao_pedro_c 4 роки тому

      He said a is positive

    • @nournote
      @nournote 4 роки тому

      @@joao_pedro_c Thanks.
      At what point the fact that a>0 was used?

    • @joao_pedro_c
      @joao_pedro_c 4 роки тому +1

      @@nournote i cant rewatch rn but I think he said it when he made the u sub to get the gaussian integral

  • @h4z4rd28
    @h4z4rd28 4 роки тому +3

    In Slovak:
    Prečo to urobiť jednoducho, keď sa to dá urobiť zložito? :)

  • @MrZeno001
    @MrZeno001 4 роки тому

    You are really a nice guy!

  • @reinerwilhelms-tricarico344
    @reinerwilhelms-tricarico344 4 роки тому

    11:20 I think it's actually "Es geht mir auf die Nerven".

  • @Psjt9230
    @Psjt9230 4 роки тому

    What an idea

  • @alireza-vq6ul
    @alireza-vq6ul 3 роки тому

    It is useful. thanks.