Epsilon -delta proof for sqrt function

Поділитися
Вставка
  • Опубліковано 29 січ 2025

КОМЕНТАРІ • 48

  • @anglaismoyen
    @anglaismoyen 11 місяців тому +34

    I think this is the fourth or fifth epsilon-delta video I've watched without fully understanding what it's all about. No problem, I'll keep trying until one day I get it.

    • @flamewings3224
      @flamewings3224 11 місяців тому +11

      It’s about visualisation. Imagine the grahp of y = sqrt(x). And you wanna be sure that lim as x -> 4 you get y = 2. Cause sqrt(4) = 2, but… In the limit problem you HAVE TO be sure about values NEAR the point. So, there are delta, which is for near x values, and epsilon, which is near y values. And you wanna be sure that more delta gets smaller, than more your y values gets close to 4 with more epsilon gets smaller…
      Sorry for maybe not good explaining, but try to watch something about visual proof

    • @PrimeNewtons
      @PrimeNewtons  11 місяців тому +9

      Great explanation 👌

    • @kingbeauregard
      @kingbeauregard 11 місяців тому +4

      Imagine a function, and a point on that function where you want to prove it's continuous. Now, can you imagine a rectangle centered at that point, of such dimensions that the function never hits the top or bottom edge? And can you shrink that rectangle down to nothing, such that the function never hits the top or bottom edge at any size? If you can do that, it means that the function truly is getting closer and closer to that point as you zoom in, all the way down to hitting that point. Soooo, epsilon-delta is about demonstrating, with mathematical rigor, that you can indeed construct a rectangle with the proper proportions to make this happen; if the rectangle exists, then the limit is proven.
      That's the basic concept, as it makes the most sense to me. The height of that rectangle is 2*epsilon, and the width of that rectangle is 2*delta; and there is a relationship between epsilon and delta such that, as epsilon gets smaller, so does delta.

    • @PrimeNewtons
      @PrimeNewtons  11 місяців тому +6

      @@kingbeauregard How have you been? Welcome back!

    • @kingbeauregard
      @kingbeauregard 11 місяців тому +4

      @@PrimeNewtons Thanks! I've been busy with ... I don't even know what any more. It's like someone's been stealing hours out of my day, and I want them back.
      But it's good to see you again; you're looking well, and I approve.

  • @DagmawiTesfaye-ev2tx
    @DagmawiTesfaye-ev2tx 9 місяців тому +5

    Something close to genius
    You're one of the greats
    Has anyone ever told you that
    I mean you're great you really are
    We appreciate it.
    Where r u from

  • @MarioJR258
    @MarioJR258 10 місяців тому +7

    You are the best one. Watching you From Mozambique

  • @SiyaNyuli
    @SiyaNyuli 8 місяців тому +4

    your hand writing is awesome

  • @AbrhamGetachewBiGBrain
    @AbrhamGetachewBiGBrain 5 місяців тому

    I am so glad,becouse i haven't seen anyone before like you

  • @kingbeauregard
    @kingbeauregard 11 місяців тому +4

    I like the cut of your jib sir; also your new hat.
    Also, I like the brutally methodical way you approach this: find some way to yank an |x - a| out, and then set the rest to the maximum value it can take in a strategically-chosen domain around x = a.
    Also, I like that you used the conjugate. I did not; I opted for a more general approach, which meant more work but got me to the same place. We know that t^n - b^n = (t-b)*(a bunch of terms), or equivalently, that (t-b) = (t^n - b^n)/(a bunch of terms). Now, suppose t = sqrt(x) and b = sqrt(a), and n = 2: then you can replace "sqrt(x) - sqrt(a)" with "(x - a) / (a bunch of terms)". At that point, I got to where you got to, but it took more work.

  • @Smg-p5s
    @Smg-p5s 3 місяці тому

    thank you nso much. i now understand this concept. hats off to you

    • @najjumahabibah
      @najjumahabibah 2 місяці тому

      You’re slow

    • @Smg-p5s
      @Smg-p5s 2 місяці тому

      @najjumahabibah savez dit quoi ?

  • @anirudhmannattil9745
    @anirudhmannattil9745 6 місяців тому +1

    Hi, thank you for the insightful explanation! I just had a query though:
    Since we factorized out (1 / (sqrtx + 2)), why can't we write as x approaches 4, this value tends to 1 / 4 and hence, delta = 4 * epsilon?

  • @williampeters71
    @williampeters71 7 місяців тому

    nice video to get he point over would state that if a < b the 1/a > 1/b

  • @punditgi
    @punditgi 11 місяців тому +2

    Brilliant! 🎉😊

  • @mohammedaminelm7836
    @mohammedaminelm7836 6 місяців тому

    I love your videos!

  • @ryemiranda6800
    @ryemiranda6800 11 місяців тому +2

    Do you have video suggestions or playlists where I can understand limits? Especially these epsilon delta proofs. I want to try to advance learn these lessons in calculus even Im in highschool learning algebra 2.

  • @LORDLDUQ
    @LORDLDUQ 11 місяців тому +1

    Great video!!

  • @shmuelzehavi4940
    @shmuelzehavi4940 11 місяців тому +4

    Nice explanation, however I'm a little bit confused. Isn't it simpler to prove formally
    that: √x ⟶ 2 as x ⟶ 4 in the following way ?
    |√x - 2| = |(x - 4) / (√x + 2)| = |x - 4| / (√x + 2) ≤ |x - 4| / 2
    Now, let ε > 0 . We define now: δ = 2ε . Therefore, for: 0 < |x - 4| < δ = 2ε we obtain:
    |√x - 2| ≤ |x - 4| / 2 < 2ε / 2 = ε
    Therefore:
    |√x - 2| < ε ∎

    • @DutchMathematician
      @DutchMathematician 11 місяців тому +1

      Your proof is almost 100% correct.
      The part that is missing is the fact that δ must be chosen in such a way that the restriction 0 < |x - 4| < δ ensures that the value of x belongs to the domain of √. Hence, δ can be at most 4.
      Prime Newtons chose 1 as an upper bound for δ but didn't mention the reason that this choice is valid (with respect to the domain of √).

    • @shmuelzehavi4940
      @shmuelzehavi4940 11 місяців тому

      @@DutchMathematician You're right, and therefore we have to chose:
      δ = min {2ε , 4}.

  • @timothywesley1901
    @timothywesley1901 10 місяців тому +2

    What eraser does he use because his chalkboard always looks brand new

  • @zianiera
    @zianiera 11 місяців тому +1

    Thats correct argumentation

  • @rivasu1030
    @rivasu1030 11 місяців тому +3

    Hello, good explanation. But if you begin
    |x-4|

  • @orey0721
    @orey0721 10 місяців тому +1

    You're special one

  • @SimthandileMthe-ed5uq
    @SimthandileMthe-ed5uq 9 місяців тому

    can you please explain why you say the square roots of(x)+2 is always positive?

    • @Totsy30
      @Totsy30 8 місяців тому

      Probably because you cannot take the square root of a negative, and since there is no subtraction in that statement, it'll always be positive.

  • @frxysse
    @frxysse 11 місяців тому

    Hi i'm just studying limit proofs at uni. It would be very helpful if you could do a epsilon-delta proof in 2 variables, thanks

  • @JourneyThroughMath
    @JourneyThroughMath 11 місяців тому

    Maybe Im just not used to these problems or Im missing some tiny detail, but it was always problems like this that seemed very hand wavy

    • @kingbeauregard
      @kingbeauregard 11 місяців тому

      They're counterintuitive as heck, that's for sure. They come down to, if I can establish a relationship between epsilon and delta, then the function is continuous, and that feels like a non-sequitur. But we've established a particular relationship between epsilon and delta, that says something about, the closer you get to (a, L) vertically, the closer you get to (a, L) horizontally too.

  • @MichaelIfeco-tj1jc
    @MichaelIfeco-tj1jc 7 місяців тому

    What if it's a cube root or even a fourth root

  • @h1a8
    @h1a8 11 місяців тому +1

    Here's a simple proof
    Let d=e>0 and 0 < |x-4| < d
    |x - 4| = | [sqrt(x)-2] * [sqrt(x)+2] |
    = | [sqrt(x)-2] | * | [sqrt(x)+2] |
    => | [sqrt(x)-2] | = |x-4| / | [sqrt(x)+ 2] |
    < |x-4|
    < d = e

  • @glorrin
    @glorrin 11 місяців тому

    I am unconvinced by the necessity of saying |1-4|=0 => 1/(sqrt(x)_2) |x-4|< 2 epsilon
    and choose 2 epsilon as our delta.
    Oh wait.
    Not all function are like sqrt(x)
    some do not have an obvious minimum/maximum
    this is a great too for any situation :)

  • @williampeters71
    @williampeters71 7 місяців тому

    listened again getting clearer we assume a delta less than 1 what if the limit of the function dne then this would be false

  • @danobro
    @danobro 11 місяців тому +5

    First comment that's not a bot, let's gooo!

  • @klementhajrullaj1222
    @klementhajrullaj1222 11 місяців тому

    For me x=4 it's ok only for 1/(Vx+2)=1/4, because |x-4|

  • @olumuyiwaasaolu7674
    @olumuyiwaasaolu7674 4 місяці тому

    After 9:08, why not use
    abs(x-4)
    LT €(x½ + 2 - 2 + 2)
    LT €(x½ - 2 + 4)
    LT €(€ + 4)
    Thus, choose delta
    = €² + 4€

  • @hqs9585
    @hqs9585 10 місяців тому

    Why do you have to use value of 1, Just use the inequality |a+b|

  • @abhinashdundu5354
    @abhinashdundu5354 11 місяців тому +1

    Please stop these calculus epsilon delta problems and solve problems from trigonometry, probability or coordinate geometry.🙏🙏

    • @PrimeNewtons
      @PrimeNewtons  11 місяців тому +6

      Send me a list of problems. Let me decide what to do

  • @aliyymusa1896
    @aliyymusa1896 28 днів тому

    First to comment this new year 1st of January 2025 ....
    See you all in January 1st 2026
    Bi idnhillah

  • @NigusYilma-tj6dc
    @NigusYilma-tj6dc 8 місяців тому

    Special one

  • @축복이-x6u
    @축복이-x6u 11 місяців тому

    asnwer=2 isit

  • @odalesaylor
    @odalesaylor 11 місяців тому

    I don't think most students would follow this. There is too much assuming. It sounds like Mystification instead of clarification.