A Nice Olympiad Math Algebra Equation | Can you solve for x?

Поділитися
Вставка
  • Опубліковано 24 гру 2024

КОМЕНТАРІ •

  • @jedrzejczyzkowski8577
    @jedrzejczyzkowski8577 День тому +3

    My stupid ass immiedietely thought of 1

    • @LTG_Lanny
      @LTG_Lanny День тому +1

      It’s one of the answers though, right?

    • @coolvijay5128
      @coolvijay5128 День тому +1

      I thought of the same answer just after seeing the thumbnail

  • @zawatsky
    @zawatsky День тому +1

    1:57 - не по правилам! (x+1)(x³+x+1)=0. x=-1 ∨ x³+x+1=0.

    • @SALogics
      @SALogics  16 годин тому +1

      Very nice! ❤

  • @wes9627
    @wes9627 День тому +1

    Euler made this problem easy by noting that 1=e^{2ijπ}, where e is Euler's number, π is the ratio of circle circumference to diameter, i=√(-1), and j is any integer.
    For x^n=1=e^{2ijπ}, n any positive integer, the n roots would be given by x_j=e^{2ijπ/n}=cos(2jπ/n)+i*sin(2jπ/n), j=0,1,...,n-1
    For x^5=1=e^{2ijπ} we have x_j=e^{2ijπ/5}=cos(2jπ/5)+i*sin(2jπ/5), j=0,1,...,4, which are easily evaluated using a pocket calculator.