Dirac delta function | Lecture 33 | Differential Equations for Engineers

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 17

  • @ProfJeffreyChasnov
    @ProfJeffreyChasnov  5 років тому +5

    Find other Differential Equations videos in my playlist ua-cam.com/play/PLkZjai-2JcxlvaV9EUgtHj1KV7THMPw1w.html

  • @shubhishrivastav8786
    @shubhishrivastav8786 4 роки тому +2

    Thank you so much, I was solving David J.griffths book of electrodynamics this is helpful for me.

  • @JohnEloi
    @JohnEloi 2 роки тому

    Thanks for your great explanation about Dirac Delta Function!

  • @elnaeemabdalla
    @elnaeemabdalla 3 роки тому

    Nice review for Dirac delta function,thank you very much

  • @ktporousktmedia8021
    @ktporousktmedia8021 3 роки тому +1

    Your description of Delta function is not correct.
    Delta(t-c)=infinity at x=c, and =0 at x which is not equal to c.
    Then the integral of Delta(t-c) is Zero by Lebesgue inetegral theory.
    You had better study the distribution theory by Laurent Schwartz and Lebesgue integral theory.

  • @secularbanda1808
    @secularbanda1808 3 роки тому

    Your voice is quite pleasant to hear.....♥️♥️♥️

  • @deepvision8877
    @deepvision8877 4 роки тому

    I do not think that the argument to show that the integral of the Dirac delta function is 1 using limits of a function is a valid proof.
    If you replace the 2 in the function that has a magnitude of 1/2e you will still approach the same limit. meaning that a function G(t) defined in the range -e to e with a magnitude of 1/3e gives an area of 2/3.
    Now the limit as e goes to zero 1/3e goes to infinity. Therefore using the same argument, the integral over the infinite range of the Dirac delta function is 2/3.
    Generalizing, If I had any function defined in the range -e to e with magnitude 1/ne where n is any integer, then the integral over the infinite range could be any number (2/n).
    Therefore if the argument given is valid, the integral does not exist.

  • @pcspictures312
    @pcspictures312 4 роки тому +1

    Thank you👍

  • @pearechen5111
    @pearechen5111 4 роки тому

    really extremely helpful! thank you sir you made my day lol!

  • @klalrinchhana5680
    @klalrinchhana5680 5 років тому

    Great video. Thanks

  • @Nik-qh7cq
    @Nik-qh7cq 3 роки тому

    Is dirac function and its properties rigorous according to mathematics??

    • @ProfJeffreyChasnov
      @ProfJeffreyChasnov  3 роки тому +2

      There is mathematical rigor. It is called a distribution. Not many physicists care about that.

    • @Nik-qh7cq
      @Nik-qh7cq 3 роки тому +1

      @@ProfJeffreyChasnov thanks for the fast reply!!

  • @samuelokon8842
    @samuelokon8842 4 роки тому

    Awesome!!!

  • @adutwumakwasi9675
    @adutwumakwasi9675 5 років тому

    Please solve examples