American Option Pricing with Binomial Trees || Theory & Implementation in Python

Поділитися
Вставка
  • Опубліковано 25 гру 2024

КОМЕНТАРІ • 14

  • @lornemalvoo
    @lornemalvoo 3 роки тому +5

    This channel is certainly a gold mine. Please sir keep it up.

  • @thetrickingcorner439
    @thetrickingcorner439 10 місяців тому

    This video is amazing. Thank you so much :)

  • @daves1413
    @daves1413 2 роки тому

    Awesome tutorial, keep it up

  • @schnohr3292
    @schnohr3292 2 роки тому +1

    Great video!
    Have you done a video on pricing in trinomial trees or do you plan on doing one? More specifically on pricing American call options using a two-factor Hull-White model?

    • @QuantPy
      @QuantPy  2 роки тому +1

      Yes will get to trinomial trees and can include hull-white model 👍

  • @wajihchtiba34
    @wajihchtiba34 3 роки тому

    i really like your channel !

  • @Johnny2tc
    @Johnny2tc Рік тому

    Hi @QuantyPy , great video. when proving the idea that you should never discount earlier for American call option, why do we use e (assume continuous compounding) for the interest earned for our bank account given that none pay that? I always wondered that when seeing e in many formula.
    Thank

  • @siddharthsidselvamohan2051
    @siddharthsidselvamohan2051 3 роки тому

    Hey, Thanks for the video. I am getting different values when using different # of steps. that is, for N = [3,10,1000,5000], I think we should define u and d inside the function and compute them with varying N, if using constant u of 1.1, then the option price is varying a lot

    • @VegaTraderFR
      @VegaTraderFR 10 місяців тому

      Right, u and d are fonctions of the time step value. So : u = exp[sigma * sqrt(T / N)] where N is the time steps number and T the maturity given in years. The expression for d is straightforward.

  • @lebagnard6018
    @lebagnard6018 3 роки тому +1

    could we get the trinomial tree ? please ? :D

    • @QuantPy
      @QuantPy  3 роки тому

      Yes 👍 I’ll make some videos soon

  • @joshjoshuasimon
    @joshjoshuasimon Рік тому

    Legend

  • @tim2138
    @tim2138 10 місяців тому

    I dont think you can compare valuation of the same portfolio for different time

  • @tejusrawal3871
    @tejusrawal3871 Рік тому