Predict House Prices With Machine Learning And Python [Full Tutorial]

Поділитися
Вставка
  • Опубліковано 7 лис 2024

КОМЕНТАРІ • 37

  • @tianbowen721
    @tianbowen721 Рік тому +2

    You speak so concise and clear !! So well organized ! Even better than our professor at the university!

  • @AlphaChinou
    @AlphaChinou Рік тому +1

    Vik, these tutorials are amazing. I'm a Dataquest member and absolutely love the platform and learning with your team. Incredible stuff! Thanks.

  • @businessandmanagmentlesson8592
    @businessandmanagmentlesson8592 2 роки тому +10

    Thanks, we need more similar videos

  • @Quantumvp
    @Quantumvp 2 роки тому +1

    Thanks Vikas you always give us a real user friendly experience

  • @AntonioGondim-uf5eh
    @AntonioGondim-uf5eh Рік тому

    Vik this is amazing, man. I really appreciate you having this free material. high quality stuff

  • @TheTurmoiljack
    @TheTurmoiljack Рік тому +1

    Very useful video, well explained and really easy to follow along the entire thing for someone like myself that is still a beginner to python for data science, and was fun to follow along the machine learning even though the majority of it went over my head for the time being!
    One question i have is what is the reason that the 3 federal reserve data sets could be combined using .concat and then .ffill, however the 2 zillow files require the loop to_datetime, creating a new month column and then merging based on this column? is this simply because of the fact the data from the original csv was not in the correct format initially?

  • @IbrahimOld
    @IbrahimOld Рік тому

    Thank you very much
    But I have a question
    What is the method you did use of this project? ANN or RNN?

  • @ChristinaStevens-p4n
    @ChristinaStevens-p4n Рік тому +1

    This was awesome. Thank you for being so clear and thorough.

  • @maulanaajiw6184
    @maulanaajiw6184 2 роки тому

    Bravo Dataquest 👏 I hope in another video, you will teach how to calculate each algorithm manually.

  • @culimoweyn6273
    @culimoweyn6273 2 місяці тому +1

    Thank you

  • @agrawal1207
    @agrawal1207 Рік тому +2

    Where is the predicted data?

  • @lantispillay5363
    @lantispillay5363 Рік тому

    Hi Vik, Incredible stuff! Thanks.
    would you consider doing a video on predicting sales forecasts of different products

  • @sumitbarua9121
    @sumitbarua9121 Рік тому

    what is prerequiste before doing project?

  • @TheNenelly
    @TheNenelly 2 роки тому

    Thank you! This was great! Would love to see on the same topic using LSTM :D

  • @mquannz5573
    @mquannz5573 Рік тому +1

    How to predict future values for rows that have NaN values at 22:20 after building the model sir :( I don't know how to do the predictions phase after I build my model

    • @mquannz5573
      @mquannz5573 Рік тому

      please anyone can help me with this one :'(

  • @dpratte
    @dpratte Рік тому

    Very fine job, Sir!
    Thank you.

  • @FauziNomad
    @FauziNomad 2 роки тому +1

    Very valuable channel. Just love it! Subscribed..

  • @tt4m
    @tt4m 2 роки тому +1

    شكرا ❤️

  • @realestatemarketreports-me8668
    @realestatemarketreports-me8668 2 роки тому +1

    Very informative. Thanks for sharing. (I am sure this can be done using JS, too.)

    • @Dataquestio
      @Dataquestio  2 роки тому

      Yes, you can do this in JS, but it would be harder. JS doesn't have the same data libraries (pandas, scikit-learn, etc) that Python does.

  • @prasanthi7173
    @prasanthi7173 2 роки тому

    Just asking how to deploy this model?? I mean to make a website for prediction

  • @Onlinefreelancingacademy
    @Onlinefreelancingacademy 2 роки тому

    Thanks very much especially for the data

  • @idkidkidk3488
    @idkidkidk3488 Рік тому

    Thanks! This video was very usefull!

  • @jakhongirs
    @jakhongirs Рік тому

    What other machine learning algorithms can we use with this data?

    • @Dataquestio
      @Dataquestio  Рік тому

      Pretty much any regression algorithm - SVM, random forests, xgboost, etc.

  • @laczkos
    @laczkos 2 роки тому

    Thanks a lot for this very helpful video!!

  • @jamesleleji6984
    @jamesleleji6984 2 роки тому

    Can this be done using R? Thanks

    • @Dataquestio
      @Dataquestio  2 роки тому

      Hi James - you can definitely do this using R. R has packages that work similarly to pandas and scikit-learn.

  • @rajeshmanjrekar3614
    @rajeshmanjrekar3614 2 роки тому

    I am getting an error, at the program step : price_data.index = dfs[0].index ........and the error in shows "ValueError: Length mismatch: Expected axis has 748 elements, new values have 754 elements" kindly help

    • @Dataquestio
      @Dataquestio  2 роки тому

      It looks like price_data has a different number of rows from dfs[0]. This would happen if the data wasn't loaded/cleaned properly.

    • @rajeshmanjrekar3614
      @rajeshmanjrekar3614 2 роки тому

      @@Dataquestio your video also the exact number of records that i have ....kindly request you to please check, thanks a lot for replying

    • @rajeshmanjrekar3614
      @rajeshmanjrekar3614 2 роки тому

      @@Dataquestio my dfs[0] has 754 rows, and my dfs[1] has 319 rows exactly the way shown in your video, thanks again for your reply. regards, rajesh manjrekar

  • @varuncharan9109
    @varuncharan9109 8 місяців тому

    This one is very complicated project

  • @aakashgohil859
    @aakashgohil859 Рік тому

    Hi Vik, thank you for sharing the video it helped a lot. also would you mid sharing your email I have some questions to ask ?

  • @rajeshmanjrekar3614
    @rajeshmanjrekar3614 2 роки тому

    i am also getting a warning at the following step :
    for df in dfs:
    df.index = pd.to_datetime(df.index)
    df["month"] = df.index.to_period("M")
    the warning is as follows: C:\Users\HP\AppData\Local\Temp\ipykernel_12456\3620532488.py:2: UserWarning: Parsing '16-02-2008' in DD/MM/YYYY format. Provide format or specify infer_datetime_format=True for consistent parsing.

    • @Dataquestio
      @Dataquestio  2 роки тому

      This warning is fine, this is related to how dates are written in the US vs some other countries.