Deriving Kinematics Equations Using Calculus

Поділитися
Вставка
  • Опубліковано 12 січ 2025

КОМЕНТАРІ • 157

  • @usablefiber
    @usablefiber 9 років тому +103

    I wish there was a single calculus textbook produced on planet earth that adequately explained integral notation.

  • @BoZhaoengineering
    @BoZhaoengineering 5 років тому +5

    AP C is a must take for engineering students. It is very nice to watch this derive for kinematics and then re-fresh derive the formula for uniform acceleration motion using function graph method. With the two methods, it provide a deep understanding of calculus.

  • @lasseviren1
    @lasseviren1  13 років тому +19

    dv/dx describes how an object's velocity changes with small changes in its position.

  • @groovejet77
    @groovejet77 6 років тому +8

    Bravo! I've been looking for something like this for ages. Well done. Its just like how my old maths teacher taught us about parabolic equations and laws of motion

  • @tylerhurson8515
    @tylerhurson8515 9 років тому +28

    Very insightful, thank you. I hate just plain memorizing these formulas. It helps me much more if I can understand where they came from.

  • @alaaabusaleem4652
    @alaaabusaleem4652 11 років тому +24

    May allah bless you ... this is an ehsan from you sir

  • @danal308
    @danal308 9 років тому +19

    After hours searching the internet I FINALLY found this video with the answer to my math IA, thank you very much Sir!!!!!!

    • @42aleks42
      @42aleks42 9 років тому

      +Dan Al OMG SAME are you doing the IB?

    • @danal308
      @danal308 9 років тому

      +aleksdurowicz yes

    • @42aleks42
      @42aleks42 9 років тому +1

      Haha I included it in my math exploration as well :)

    • @stephanielue8454
      @stephanielue8454 4 роки тому

      You graduated in the wrong year hehehe. M20 exams are cancelled! >

    • @naian6167
      @naian6167 4 роки тому +1

      @@stephanielue8454 welp i graduate in 2021...

  • @almavestagroup
    @almavestagroup 11 років тому +5

    Actually 'a' is a constant so just focus on the 't'. When you take the integral of t dt, you get t^2/2. Then multiply this value by a and you get at^2/2.

  • @midnightcanvas59
    @midnightcanvas59 12 років тому +7

    understood it better than with my physics teacher, thanks! :)

  • @nitinsharma7216
    @nitinsharma7216 3 роки тому +1

    I am a class 11th Student and was searching for this because tomorrow is my exam and I understood it completely.

  • @sumathisumathi8176
    @sumathisumathi8176 4 роки тому +2

    May God bless you sir for this superb explanation

  • @legna3648
    @legna3648 4 роки тому

    This videos is awesome, I always forget equations so this is really useful for when I forget. If I do forget I can just derive them myself!

    • @JesusMartinez-zu3xl
      @JesusMartinez-zu3xl 3 роки тому

      I don’t like memorizing so I try to derive everything as much as possible

  • @shutupimlearning
    @shutupimlearning 2 роки тому

    Holy damn I needed this so much for my physics lab. Thank you!

  • @gundamblaster5889
    @gundamblaster5889 2 роки тому

    Thank you so much for explaining to me how to have the kinematic formulas using calculus.

  • @alephnot000
    @alephnot000 11 років тому

    thank you for using the convention of "V-initial" instead of "V-not". Its like a personal tick I have been dealing with since high school.

  • @MisterBinx
    @MisterBinx 8 років тому +2

    Thanks so much. I'm taking Dynamics and I haven't taken differential equations yet. The book just sort of expects you to know how this is done.

    • @MisterBinx
      @MisterBinx 8 років тому

      So far I've used a little. Just basic integration to derive these formulas.

    • @harshitmehrotra6837
      @harshitmehrotra6837 7 років тому +1

      no

    • @Omar-gs5jw
      @Omar-gs5jw Рік тому

      Wonder how much you progressed since this

  • @bboydjoe
    @bboydjoe 14 років тому

    wow this is very useful instead of trying to memorize the formulas, thanks!

  • @HDitzzDH
    @HDitzzDH 4 роки тому +1

    7:13 Isn't that just the chain rule? Velocity "v" is a function of displacement "x" which itself is a function of time "t". So we get than v(x(t)), the derivative of this with respect to t would then be: d/dt[ v(x(t)) ] = v'(x(t))*x'(t) or (dv/dx) * (dx/dt) :)

    • @xenomni1673
      @xenomni1673 4 роки тому

      So the velocity function in this case does not take a time in, it takes in a position and returns the corresponding instantaneous velocity at that position?

  • @Cambo866
    @Cambo866 11 років тому

    I'd recommend anyone who's starting out in calculus to watch and rewatch 0:37 to 1:05. It's a very good explanation if you want to develop an intuition for what calculus is all about.

  • @prashantghimire8187
    @prashantghimire8187 6 років тому

    At 5:03 I understand how the anti-deravite of at = (1/2at)^2. Why isn't it the same for the Vi?
    Is it just because it's t isn't t^2 or does it have somethins to do with the constant that I don't know about?

    • @carultch
      @carultch 2 роки тому

      It comes from the power rule for polynomial term calculus.
      When you take derivatives, the original power compounds with the original coefficient, and the power is reduced by one.
      d/dx k*x^n = k*n*x^(n-1)
      n is zero for constants, which means the term disappears when differentiated.
      n is one, for terms directly proportional to x
      When you take integrals, you do exactly the opposite. The power increases by 1, and you divide the coefficient by the new power.
      integral k*x^n dx = k/(n+1) * x^(n+1) + C
      n is zero for constants, which means the term simply multiplies by x
      n is one, for terms directly proportional to x, which means the power increases to squaring, and you accumulate a 1/2 term to compound with the coefficient.
      You notice this rule always works for derivatives, but for integrals, we run in to a problem when n=-1, because we get a divide by zero error. Calculus has the solution, and that is that the integral of x^(-1) is ln(abs(x)) + C.

  • @syedmodein1949
    @syedmodein1949 6 років тому

    thank usir because of u i leaarnt kinematic equations derivations andd hence i learnt what is integration...thank u vry much

  • @sameqy
    @sameqy 8 років тому +4

    At 5.03, I know you said acceleration is a constant but I don't get why it has to be 1/2a, I get why it is t^2. Could you explain please. Cheers

    • @TheGoldenriff
      @TheGoldenriff 8 років тому +1

      a/2t^2 is a messy way of saying 1/2(at)^2, you can take the anti derivative of the term (at) and you would end up with 1/2(at)^2, you can check your logic by taking the derivative of 1/2(at)^2, and 2(1/2)(at) = (at). Hope that helps.

    • @samarthasr
      @samarthasr 7 років тому

      But then the derivative of 1/2 is 0, and 0 times anything is 0, hence 1/2(at)^2 is 0, but that's not the case?
      :-(

    • @asdflkj2041
      @asdflkj2041 7 років тому

      samartha s.r No you can't do that. You have to use the constant rule of derivatives. (1/2)(a) is a constant. You set that aside. Now take the derivative of t^2. It is 2t. Now you can bring back the constant. Hence, derivative of (1/2)(a)(t^2) is (1/2)(a)(2t). Cross out the "2"s on the top and bottom and you get (at).

    • @frankieiero6859
      @frankieiero6859 6 років тому

      Aaaaaaaaaaaaa

    • @GabrielPohl
      @GabrielPohl 6 років тому

      guys, take the analogy of integral of (kx)dx
      you are going to find:
      k times integral of x wich is k/2*x^2
      so integral of "a" times tdt is:
      a/2*t^2

  • @konradgebura3985
    @konradgebura3985 4 роки тому +1

    You could also leave it as an indefinite integral to get a form for quadratics.

  • @diuyankirbyjamesl.5892
    @diuyankirbyjamesl.5892 2 роки тому

    We usually called Vi(initial velocity) and vf(final Velocity)

  • @zenon1177
    @zenon1177 6 місяців тому

    if only I knew when I was 3, 14 years ago that I would need to watch these videos going into AP Physics C next year

  • @GabrielPohl
    @GabrielPohl 6 років тому

    Only now i finally totally understood this! Cheers!

  • @tataskookieswithtytrack5946
    @tataskookieswithtytrack5946 5 років тому +1

    I'm in AP physics, I was told it was going to be algebra based... I'm barely in my first few units of pre-calculus and my teacher can't teach, he sprung this on us from nowhere.

  • @ryanbutton8718
    @ryanbutton8718 9 років тому +1

    Thank you so much. Very helpful and well presented

  • @johnjordan3552
    @johnjordan3552 3 роки тому

    thank you, I have been learning physics for +3 years and I have just discovered how to derive these formulas

  • @shortmeister6776
    @shortmeister6776 6 років тому

    it was really cool calligraphic explanation dude!!!!!!!!!thanks tonssss!!!!!!!!!!!!

  • @radiotv624
    @radiotv624 8 років тому

    Thanks, very helpful for my physics class

  • @crawperson
    @crawperson 10 років тому +12

    Are you a hand model?

  • @jeopardyking7187
    @jeopardyking7187 3 роки тому

    according to u which gives more depth calculus proof or other geometrical/algabriac proof given in university zemanskys physics? Becasue i am more comfortable with calculus proof.

  • @mike40044004
    @mike40044004 4 місяці тому

    Amazing video, thank you brother!

  • @headmanlesetlhe1635
    @headmanlesetlhe1635 3 роки тому +1

    Thank you so much... now i understant

  • @arijit1809
    @arijit1809 6 років тому

    Thnks sir...Your way of teaching is quite easy....Got it in the first time 🙏🙏

  • @tomassolucello3895
    @tomassolucello3895 5 років тому

    Lasse Viren, the flying Finn!' I remember watching him in the Olympics when I was a kid. Great video...

  • @Heezybeats1
    @Heezybeats1 5 років тому

    very useful video, but how did 2 came below A in the third equation?? please help me with that

  • @rahulkumarsharma4571
    @rahulkumarsharma4571 7 років тому

    Thanks you so much for this video....now I got it....🙂🙂🙂😙😙😙😉😉😀😀😀

  • @marcus_cowan
    @marcus_cowan 10 років тому

    Great Video! I have one question, is V final in the last equation supposed to be negative or positive?

  • @TotallyOKaYProductions
    @TotallyOKaYProductions 5 років тому

    This video is amazing, thank you so much

  • @heinbezuidenhout4385
    @heinbezuidenhout4385 Рік тому

    my friend you truly are the second coming of christ thank you so much

  • @Vasilijz395
    @Vasilijz395 5 років тому

    But why is time boundary is 0 and t, not time initial and time final just like velocity having boundary of velocity initial and velocity final? I'm dumb but pls answer my question Sir, Thank you!

    • @carultch
      @carultch 2 роки тому

      The bounds of integration on time, could really be either time initial and time final, or zero and t. Since it is arbitrary where we define time = 0, you might as well define it to start at t=0. The times when you would have the distinction, is if you have multiple intervals, each with a different acceleration.

  • @jimmyalderson1639
    @jimmyalderson1639 7 років тому

    Why do you rearrange the acceleration and ve,ocity equations so you have vi and vf, but when you derive the distance equations you just combine them into (delta)x?
    Why did Newton decide he wanted two velocity veriables but that he didn't want two distance veriables?

  • @vinnienauta
    @vinnienauta 13 років тому

    can please explain how you got a/2.. I MEAN I GET IT but I WANT TO LEARN HOW TO TEACH IT

  • @TU-qc5xr
    @TU-qc5xr 2 роки тому

    thank you so much this video blew my mind. you called "a" the intergrant, is there other names for the other parts of the intregal you could tell me about?

    • @lasseviren1
      @lasseviren1  2 роки тому +1

      Glad you find the viideos helpful. "a" is the integrand, "dt" is called the differential. To solve the integral you take the antiderviative of the integrand and the differential tells you what the variable is, namely t (in this case.) So the (integral) 5 dt = 5t but the (integral) 5 dx = 5x.

    • @TU-qc5xr
      @TU-qc5xr 2 роки тому

      @@lasseviren1 so A , which is a constant like some number such as 5 means that you plug in the integral of acceleration like dt =at and dx= ax using the constant?

  • @TheGoldenriff
    @TheGoldenriff 8 років тому

    how is the antiderivative of vi vi(t)? Shouldn't it be 1/2 vi ^ 2 ?

    • @lucasm4299
      @lucasm4299 7 років тому

      Josh Golden
      Because it's with respect to t.
      You treat v as a constant

  • @nilberthsouza
    @nilberthsouza 2 роки тому

    This is great material

  • @michaelgaran5634
    @michaelgaran5634 5 років тому

    For the second equation I’m confused for why the integral of (at)dt has t^2 and not t^3

  • @MaxxG94
    @MaxxG94 13 років тому

    @vinnienauta
    Hmm
    if i where teaching this I would say to take the anti-derivative -- or integral -- of at with respect to t so then that would give you the over two since when you take d/dt of (a/2)t^2 it = at
    im not sure if this helps i tried my best (x

  • @arigalaharitha6559
    @arigalaharitha6559 4 роки тому

    i did not understand first page last step. can u pls explain it again @lasseviren1

  • @legoindianajones1000
    @legoindianajones1000 13 років тому

    Which ap physics is this done in?

  • @Carnation75
    @Carnation75 12 років тому

    why do you need to divide it by 2???? please explain!!

  • @shubhekshmishra9475
    @shubhekshmishra9475 6 років тому

    Thanks sirr u r the best😄😄

  • @brookewatson3990
    @brookewatson3990 8 років тому

    okay this is a stupid question but where did a=dv/dt come from, at the very start

    • @robchecco
      @robchecco 8 років тому +1

      Acceleration = derivative of velocity with respect to time.

    • @brookewatson3990
      @brookewatson3990 8 років тому

      Ahhh okay thank you

    • @bythetimeyoufinishedreadin9083
      @bythetimeyoufinishedreadin9083 8 років тому +2

      If you're not familiar with derivative, all that's really saying is that the acceleration=change in velocity/change in time.
      Basically, if a car starts off going 10 m/s then it goes up till 15 m/s in 5 sec, then...
      Acceleration=change in velocity/change in time
      a=(15-10)m/s /5-0s
      =5/5
      =1 m/s^2
      Meaning, the "m/s^2" means the car was going 1 meter FASTER every second. So its the velocity (m/s) after each second. So m/s^2.
      So, that's the average velocity of the car.
      But what the derivative means is that....
      Acceleration=change in velocity/change in time as the change in time approaches 0. So you're finding the infinitesimally small change in velocity in an infinitesimally small change in time.
      The reason why this " infinitesimally small change" part is useful is because we can derive and do other things with the equation. Such as, taking its integral.

    • @brookewatson3990
      @brookewatson3990 8 років тому +2

      Thanks, I got it. I was clearly have an intellectual crisis when I asked this question aha.

  • @legoindianajones1000
    @legoindianajones1000 13 років тому

    We are integrating and now we are doing slope fields

  • @baz6937
    @baz6937 3 роки тому

    Thank you so much that is great job for me

  • @jagrutipai4101
    @jagrutipai4101 11 років тому

    why did u divide by 'a' by 2???please explain!!!

    • @monazza_
      @monazza_ 8 років тому +1

      He integrated it. You can check it by taking its derivative.

  • @Burner.
    @Burner. 4 роки тому

    Hi I am an Indian student and want to know in foreign this topic is covered in which standard????????

    • @9678willy
      @9678willy Рік тому

      kindergarten

    • @Burner.
      @Burner. Рік тому

      @@9678willy oohh thats right i learnt this topic in kindergarden* from your mom

    • @9678willy
      @9678willy Рік тому

      @@Burner. it’s kindergarten bruh

  • @vinnienauta
    @vinnienauta 13 років тому

    @MaxxG94 HEY thank you for TRYING!! I mean!! DAYUM IM LEARNING DERIVATIVES! AND IM ACTUALLY GETTING IT! yeah, im taking physics b. but i want to take physics c test.. physics b is boring

  • @Tomodachi666
    @Tomodachi666 11 років тому +2

    He divided by two because he was taking the integral. Therefore, a/2 is equal to the usual 1/2(a).

    • @javierarana2349
      @javierarana2349 5 років тому

      Tomodachi666 yes but how come he didn’t divide the left side by two when he took the Integral of the left side?

    • @infect6521
      @infect6521 4 роки тому +1

      @@javierarana2349 Because he took the integral of Vi (initial velocity) with respect to t (time). On the right side there was t^1 and when you take the integral of that it becomes t^2/2. On the left side there's no t so we assume it's Vi x t^0. When you take the integral of that it becomes Vi x t^1/1 which is Vi x t. Hope I've made it clear.

  • @Tkdkid9
    @Tkdkid9 13 років тому

    this is more basic differential equations, than general calculus...yes calculus is used, but a separable differential equation is still a differential equation.

  • @waleedelwakeel5721
    @waleedelwakeel5721 10 років тому +2

    Thank you very much :)

  • @MaxxG94
    @MaxxG94 13 років тому

    Yey
    I wont have to memorize the kinematics equations for the AP exam because I can derive them now haha
    lol jk

  • @Yashpandey467
    @Yashpandey467 9 років тому

    simply differensome! 😉awesome!!!

  • @abhinavkalidasan2814
    @abhinavkalidasan2814 7 років тому

    thank u
    at last the thing i wanted

  • @eliomerolle2035
    @eliomerolle2035 4 роки тому

    great video

  • @Wishingweezy
    @Wishingweezy 4 роки тому

    Thanks sir 👍

    • @Wishingweezy
      @Wishingweezy 4 роки тому

      @@beoptimistic5853 what's this

  • @justinlauk3065
    @justinlauk3065 11 років тому +1

    Thanks

  • @anzatzi
    @anzatzi 11 років тому +1

    The calc involved in mechanics is pretty basic--it almost harder to learn it the "easy" way! I dont know how you draw with a sharpie and never smear

  • @abdallatefnsour
    @abdallatefnsour 6 років тому

    What about the constant of integration

  • @jhay-jaygarfin8536
    @jhay-jaygarfin8536 3 роки тому +1

    Thank you!!.

  • @Sjhcjgyaubtveiab
    @Sjhcjgyaubtveiab 6 років тому

    Nice marble table top

  • @aniruddhachatterjee870
    @aniruddhachatterjee870 7 років тому

    very very heipful...

  • @MaSmyfication
    @MaSmyfication 12 років тому

    That's how you do the antiderivative. It's a little hard to explain in a few sentences, so why don't you check out some other videos about that?
    If you just want to see why it gives you the correct solution, you can just take the solution and take the derivative.

  • @starghosts1414
    @starghosts1414 5 років тому

    Anybody here in 2019 ?

  • @HakimHakim-in3ux
    @HakimHakim-in3ux 6 років тому

    thank you !

  • @IvanKalamazoo55
    @IvanKalamazoo55 13 років тому

    Dad, is that you??!!! LOL :))

  • @Rahuljoshi008
    @Rahuljoshi008 3 роки тому

    👍🏻👍🏻👍🏻👍🏻 thanks 😘

  • @alecjohnson8940
    @alecjohnson8940 4 роки тому +1

    legend

  • @greenpogobroom
    @greenpogobroom 11 років тому

    You da man lasseviren1!

  • @MaxxG94
    @MaxxG94 12 років тому

    Nope
    the hardest if seen it go is u subsitution and then integrating in the form of du/u
    and that was in a free response question.

  • @AbhayKumar-mc4ym
    @AbhayKumar-mc4ym 8 років тому

    You are awsome

  • @jimdogma1537
    @jimdogma1537 11 років тому

    Super cool!

  • @aanchalgupta5213
    @aanchalgupta5213 5 років тому

    Thnx

  • @sajidullah
    @sajidullah 7 років тому

    Nice

  • @yada9945
    @yada9945 5 років тому

    Thank u

  • @lsutigerfan1350
    @lsutigerfan1350 11 років тому

    mind. blown.

  • @MaxxG94
    @MaxxG94 13 років тому

    @vinnienauta
    cool
    I am taking this test too
    but i have no teacher
    Im self tought by a princenton review ap physicsc review books and any internet resources which are handy. ( and especially the videos of this teacher, he is great)
    I got a 3 in Ap phyiscs becuase i sucked at everything that WASN'T mechanics so i want my revenge lol

  • @gabriopiola9246
    @gabriopiola9246 4 роки тому

    Umm a bit confusing

  • @quentenburnett
    @quentenburnett 13 років тому

    @legoindianajones1000 Physics C Mechanics

  • @brakatsuuu00
    @brakatsuuu00 8 років тому

    thanks :)

  • @rafaelcabral2037
    @rafaelcabral2037 8 років тому

    M A S T E R -------------------------------- P H Y S I C S

  • @sarang8207
    @sarang8207 10 років тому +4

    U almost ended up confusing me

  • @WaterpoloAGUIRRE12
    @WaterpoloAGUIRRE12 11 років тому

    I do been doing this in my head since 8th grade im now in MIT as a 16 year old

  • @alial-musawi9898
    @alial-musawi9898 7 років тому

    You keep forgetting about the integration constant 😂😂

    • @Pittsburghpensosm
      @Pittsburghpensosm 7 років тому

      Ali Al-Musawi With indefinite integrals the constant of integration cancels out so there isn't much benefit writing it out every time

  • @ritikaraj3317
    @ritikaraj3317 8 років тому

    very very very very XD . amazing though

  • @LordChucky5246
    @LordChucky5246 11 років тому

    Ill be Darn'd XD

  • @2994steven
    @2994steven 8 років тому

    i love you

  • @shahnawazhussain9347
    @shahnawazhussain9347 7 років тому

    when i m serching for my physics i found a vdo that is yours..... But i am not impressed with your vdo