Evaluate z^2024 + 1/z^2024 Given that z+1/z=1

Поділитися
Вставка
  • Опубліковано 1 гру 2024

КОМЕНТАРІ • 197

  • @franolich3
    @franolich3 6 місяців тому +11

    EDIT: I do not think that the step in the proof at 6:28 makes sense. Sure, one can easily prove z^(2^k)+1/z^(2^k)=-1 by induction. But then it is assumed that:
    z^2024+1/z^2024 = z^1024.z^512.z^256...z^8 = (-1)^7
    ...when in fact:
    (-1)^7 = (z^1024+1/z^1024)(z^512+1/z^512)...(z^8+1/z^8)
    ...and this right hand side does not equal z^2024+1/z^2024 - unless of course there is a lot of cancellation due to z+1/z=1 but this is certainly not obvious or likely in my opinion.
    Instead here is another way to approach the problem which also acts as a generalisation:
    Let a[n] = z^n + 1/z^n for n>=1 with:
    a[1] = 1 (given)
    a[2] = -1 (square z+1/z=1)
    => a[n](z + 1/z) = (z^n + 1/z^n)(z + 1/z)
    => a[n].a[1] = z^(n+1) + z^(n-1) + 1/z^(n-1) + 1/z^(n+1)
    => a[n].1 = a[n+1] + a[n-1]
    => a[n+1] = a[n] - a[n-1] for n>=2
    Using this recurrence relation we get:
    a[3] = -2
    a[4] = -1
    a[5] = 1
    a[6] = 2
    a[7] = 1
    a[8] = -1
    The recurrence relation implies that any a[n] depends only on the previous 2 values in the sequence. Since a[7]=a[1] and a[8]=a[2], the sequence has a period of 6 ie a[6m+k]=a[k]. One can then use the values above to look up a[n] for any n=6m+k, for example:
    a[2024]=a[6.337+2]=a[2]=-1.

    • @mikasa_sucasa
      @mikasa_sucasa 6 місяців тому +1

      your solution is correct. OP’s is not

    • @franolich3
      @franolich3 6 місяців тому +1

      ​@@mikasa_sucasa Oh yes, the solution in the video seems to make an incorrect assumption at 6:28. I have edited my comment to reflect this. Well spotted!

  • @ThePayner11
    @ThePayner11 6 місяців тому +71

    Would be awesome to see it be generalised for z^n + 1/z^n

    • @PrimeNewtons
      @PrimeNewtons  6 місяців тому +22

      I'm sure there is a generalized form. I'll think about it.

    • @holyshit922
      @holyshit922 6 місяців тому +3

      @@PrimeNewtons if you Let u=z+1/z and want to write polynomial in u you probably will get Chebyshev polynomial
      I tried to find coefficients of Chebyshev polynomials by deriving and solving recurrence relation using exponential generating function
      or by deriving and solving ordinary differential equation using power series but I have got two sums which I cannot evaluate
      Sum from recurrence relation
      \sum\limits_{k=m}^{\lfloor\frac{n}{2}
      floor}{n \choose 2k} \cdot {k \choose m}
      Sum from ordinary differential equation
      1+\sum\limits_{k=1}^{\lfloor\frac{n}{2}
      floor}\frac{(-1)^k}{4^k}\cdot\frac{n}{n-k}\cdot {n-k \choose k}

    • @jflamingo26
      @jflamingo26 6 місяців тому +8

      You can do this quite nicely using de moivre's theorem for complex numbers :) I believe the generalised form is z^n + 1/z^n = 2 cos(n/3 pi)

    • @Cool_Name_12
      @Cool_Name_12 6 місяців тому +2

      Yeah it's very easy to generalize, first you turn the equation into z²-z+1=0 and solve for the roots to get cos(π/3)±sin(π/3)i and it's polar form will be e^iπ/3 and now we can turn z^n+1/z^n=e^inπ/3+e^-inπ/3 which if we take the complex definition of cos which is 1/2(e^ix+e^-ix) then this will equal 2cos(nπ/3) and plugging in 2024 for n for this question will give us -1.

    • @toastdog214
      @toastdog214 6 місяців тому +3

      You can in fact generalise z^n + z^-n, just let
      z = cos∅ + isin∅, and by de Moivre's theorem, which states that
      z^n = r^n(cosn∅ + isinn∅), and we can calculate r by letting n=1, and finding the magnitude of z. We can see that r=1, |z| = √(cos²∅+sin²∅) = 1. 1^n, as long as n is real, will always be 1, so we can proceed accordingly.
      Now by the theory,
      z^n = cosn∅ + isinn∅
      z^-n = cos(-n∅) + isin(-n∅), and since cosine is an even function and sine is an odd function
      z^-n = cosn∅ - isinn∅, so
      z^n + z^-n = 2cosn∅
      When n=1, given in the problem,
      z + z^-1 = 1
      2cos∅ = 1
      cos∅ = 1/2, which is a very popular angle, ∅ = π/3,
      and we can now substitute n=2024.
      z^2024 + z^-2024 = 2cos(2024(π/3)), and evaluate it with the calculator (for my convenience lol),
      z^2024 + z^-2024 = -1

  • @jlmassir
    @jlmassir 6 місяців тому +19

    Another, more general way. Let's call f(n) = z^n + z^(-n). Then f(0) = 2 and f(1) = 1 (the last equality is from the problem statement). We have the following property that can be easily checked: f(n)f(m) = f(n+m) + f(n-m). Substituting m=1 in this last equation, we get f(n)f(1) = f(n+1) + f(n-1). Remembering that f(1) = 1, we get f(n+1) = f(n) - f(n-1), which is a recurrence relation for a sequence such that any term is the difference between the previous two terms. The first two terms of this sequence are 2 and 1, therefore the sequence is:
    f(0) = 2, f(1) = 1, f(2) = -1, f(3) = -2, f(4) = -1, f(5) = 1, f(6) = 2, f(7) = 1, ...
    The last two terms f(6) and f(7) are equal to the first two terms f(0) and f(1), therefore the sequence has period 6. Therefore, f(n) = f(n mod 6). This allows the calculation of f(n) for any n, as the first 6 values f(0) through f(5) are known. So, for example,
    f(2024) = f(2024 mod 6) = f(2) = -1,
    f(2025) = f(2025 mod 6) = f(3) = -2,
    f(7404) = f(7404 mod 6) = f(0) = 2,
    etc.

    • @sarthakpapney3125
      @sarthakpapney3125 5 місяців тому

      Just beautiful.......❤
      Thanks so much....

    • @georiashang1120
      @georiashang1120 5 місяців тому +1

      It's mod 7,not 6

    • @jlmassir
      @jlmassir 5 місяців тому

      @@georiashang1120 But f(7) = 1 and f(7 mod 7) = f(0) = 2. So, if I calculated correctly f(0) and f(7), it cannot be mod 7.

    • @georiashang1120
      @georiashang1120 5 місяців тому +1

      @@jlmassir f(n(mod 7)+1)=f(n) the period is always 7 , not 6.

    • @georiashang1120
      @georiashang1120 5 місяців тому +1

      @@jlmassir trust me, I'm a Chinese, born and studied maths in communist China(only soviet union math defeats us,LOL).

  • @Risu0chan
    @Risu0chan 6 місяців тому +71

    Wait what? What/how do you factorize z²⁰²⁴+z⁻²⁰²⁴ as (z¹⁰²⁴+z⁻¹⁰²⁴)(z⁵¹²+z⁻⁵¹²)(z¹²⁸+z⁻¹²⁸)(...) ?
    Surprisingly it works here (I'm not sure why), but it would fail with 2022 or 2025 instead of 2024.

    • @dirklutz2818
      @dirklutz2818 6 місяців тому +14

      It works for any even number, but NOT if it's divisble by 6. So, if you use powers of 2 (for the combination) there is no problem; it will work.

    • @jumpman8282
      @jumpman8282 6 місяців тому

      Yeah, that is some fake algebra.
      What we could do is write
      1 ∕ 𝑧²⁰²⁴
      = 1 ∕ (𝑧¹⁰²⁴𝑧⁵¹²𝑧²⁵⁶𝑧¹²⁸𝑧⁶⁴𝑧³²𝑧⁸)
      = (1 ∕ 𝑧¹⁰²⁴) ∕ (𝑧⁵¹²𝑧²⁵⁶𝑧¹²⁸𝑧⁶⁴𝑧³²𝑧⁸)
      = (−1 − 𝑧¹⁰²⁴) ∕ (𝑧⁵¹²𝑧²⁵⁶𝑧¹²⁸𝑧⁶⁴𝑧³²𝑧⁸)
      = (−1 ∕ 𝑧⁵¹² − 𝑧⁵¹²) ∕ (𝑧²⁵⁶𝑧¹²⁸𝑧⁶⁴𝑧³²𝑧⁸)
      = 1 ∕ (𝑧²⁵⁶𝑧¹²⁸𝑧⁶⁴𝑧³²𝑧⁸)

      = 1 ∕ 𝑧⁸
      Thereby,
      𝑧²⁰²⁴ + 1 ∕ 𝑧²⁰²⁴ = 𝑧⁸ + 1 ∕ 𝑧⁸ = −1

    • @Nico2718_
      @Nico2718_ 6 місяців тому +3

      Yeah that's also what I thought

    • @Nico2718_
      @Nico2718_ 6 місяців тому

      ​@@dirklutz2818really? Is there a proof for that?

    • @arnoygayen1984
      @arnoygayen1984 5 місяців тому +1

      This keeps me awake

  • @NadiehFan
    @NadiehFan 6 місяців тому +37

    This can be done much easier, even in your head without ever touching pen or paper. The equation
    z + 1/z = 1
    implies
    z² − z + 1 = 0
    so z is one of the complex cube roots of −1 since
    z³ + 1 = (z + 1)(z² − z + 1)
    This means that we have z⁶ = (z³)² = (−1)² = 1 and therefore z⁶ⁿ = (z⁶)ⁿ = 1ⁿ = 1 for any integer n. And since 2022 is evidently an even multiple of 3 and therefore an integer multiple of 6 we have 2024 ≡ 2 (mod 6) so
    z²⁰²⁴ + 1/z²⁰²⁴ = z² + 1/z² = (z + 1/z)² − 2 = 1 − 2 = −1

  • @joseantonioandrade2808
    @joseantonioandrade2808 6 місяців тому +10

    My friend, i made it with Euler's formula and the answer it's right, but i think the demonstration whene you multiply all the factors is incomplete, it really is a long multiplication.

  • @stephanemoreau1509
    @stephanemoreau1509 3 місяці тому +1

    I agree with the last comment: the final product is a bit more complicated. There are many other pesky terms.
    If you set a_n = z^n + 1/z^n it is easy to check that there are only 6 different values of a_n. In increasing order of n: 1, -1, -2, -1, 1, 2. the remainder of the division of 2024 by 6 is 2 so a_2024=a_2=-1.
    A complex approach works very well too and is pretty fast. But I do like your approach and the fact that, even though z must be a complex number (the sum of a real number and its reciprocal has a minimum of 2), you don't need to use complex number to find the answer.
    Great question! As always, I learned a lot watching your videos.

  • @jonathanavonda8268
    @jonathanavonda8268 6 місяців тому +26

    I think there is something missing from that proof. Why do you assume you can factorize z^2024 + 1/z^2024 as ( z^1024 + 1/z^1024)( z^512 + 1/z^512)( z^256 + 1/z^256)(....)?
    Using this logic, you could argue that z^n+1/z^n is always -1 or 1 for all natural numbers n, as you can generate any natural number using the sum of powers of 2. But this is not the case. For example z^3 +1/z^3 = -2 (see below for proof of that). Am I missing something?
    Proof for z^3+1/z^3 = -2:
    (z+1/z)^3 = z^3 + 3z + 3/z + 1/z^3
    1^3 = z^3 + 1/z^3 + 3(z + 1/z)
    1 = z^3 + 1/z^3 + 3(1)
    -2 = z^3 + 1/z^3

    • @FrankACai
      @FrankACai 6 місяців тому

      The squaring computation part.

    • @dirklutz2818
      @dirklutz2818 6 місяців тому +1

      z³=-1 and 1/z³=-1 sum=-2

    • @tony413chow
      @tony413chow 6 місяців тому +1

      please elaborate on step 2024 = 1024+512+256+128......., I couldn't get it.

    • @miscellaneous3280
      @miscellaneous3280 5 місяців тому

      (z+1/z)³=z³+3z+3/z+(1/z)³, correct me if I'm wrong, but you've appeared to have mistaken (1/z)³ for 1/z³ in the last step

    • @jonathanavonda8268
      @jonathanavonda8268 5 місяців тому

      ​@@miscellaneous3280(1/z)^3 is the same as 1/z^3

  • @hitman6540
    @hitman6540 Місяць тому

    At 6:48, I remember the life before the created powers😂.
    All the love for you Mr and keep going.

  • @lubiemuze6368
    @lubiemuze6368 6 місяців тому +30

    I didn't know it's that easy... I would had probaby made a quadratic and solved it for waay to much time ... Thanks!

  • @jasonryan2545
    @jasonryan2545 6 місяців тому +9

    I think its beautiful when the comments are filled with suggestions on the other methods. Thank you so much!

  • @gregoryknapen9133
    @gregoryknapen9133 6 місяців тому +10

    if you work out the odd exponents, you'll notice the value of the expression z^n + 1/z^n cycles over the integers {2,1,-1,-2,-1,1}. 2024 = 2 (mod 6) which corresponds to the 3rd element in cycle i.e. -1.

  • @rachitchauhan8164
    @rachitchauhan8164 6 місяців тому +3

    For all integer values of 2^a=n. If z+1/z=1, z^n+1/z^n= -1.

  • @jflamingo26
    @jflamingo26 6 місяців тому +9

    you can do something similar using de moivre's theorem! If we let z = e^i(theta) then z + 1/z = 2cos(theta) = 1, so cos(theta) = 1/2 giving theta = pi/3. z^2024 + 1/z^2024 = 2cos(2024 theta) = 2cos(2024pi/3). 2024pi/3 is equivalent to 2pi/3 (the modulo when dividing by 2pi) which gives that z^2024 + 1/z^2024 = 2 cos(2pi/3) = 2 * -1/2 = -1. Your pattern recognition way is very nice though!

  • @ChristopherBitti
    @ChristopherBitti 2 місяці тому

    z + 1/z = 1 => z^2 - z + 1 = 0 => z = [1 +- sqrt(1 - 4)]/2 = 1/2 +- i * sqrt(3)/2 = e^(ix) where x = 60 degrees or x = -60 degrees, we can choose either as these are conjugates and thus they satisfy the same equations
    Since z = e^(ix) where x is 60 degrees, we can mod its exponents in z^2024 + 1/z^2024 by 6 to get that this is equal to z^2 + 1/z^2, which we can easily discern is equal to -1 by squaring the originally equality z + 1/z = 1.

  • @SaidVSMath
    @SaidVSMath 5 місяців тому +1

    Loved this! Love seeing binary representation of numbers come up in problems!

  • @bernardomms
    @bernardomms 6 місяців тому

    If you solve z+1/z=1, you will find the equation z^2-z+1=0, witch give us the complex cubic roots of the unity. Then, if you calculate z^2024 and apply the ideia of congruent arcs, you wiil find (for both roots):
    z^2024+1/z^2024 = e^(2*pi*i/3)+ e^(4*pi*i/3) =-1

  • @antonellocossu4319
    @antonellocossu4319 6 місяців тому +1

    Very elegant solution. Thumbs up to Prime Newtons! 🎉

  • @johnstanley5692
    @johnstanley5692 4 місяці тому

    Could use recursion Z(n+1)=Z(n)Z(1)-Z(n-1). (Z(n) := (x^n)+1/(x^n )) Here we are given Z(1) = 1 in which case sequence is length 6.
    i.e. Z (1..6)= {1, -1, -2, -1, 1, 2} (Z(6) = Z(0) =2). Hence Z(2024)=Z(rem(2024,6)) = Z(2) = -1.

  • @dantaswhatever1977
    @dantaswhatever1977 5 місяців тому

    You can also think of complex numbers in the one but how you think there is a general form for z^n+1/z^n=2cos(nx) this works if z have modulus 1 we can prove that z in this question have modulus 1
    z+1/z=1
    z²-z+1=0
    If you find the roots by your own you gonna notice that the modulus of z is always one
    So in the expression we can rewrite as
    z+1/z=2cos(60)
    So the argument of z is 60
    z^{2024}+1/z^{2024}=2cos(60.2024)
    if you divide 60.2024 by 360 the rest gonna be 120 so :
    z^{2024}+1/z{2024}=2cos(120)=-1

  • @bhagyanshsahu2641
    @bhagyanshsahu2641 6 місяців тому

    Wecan just use complex no. Z= r e^itheta and get the condition r= 1 by equating imaginary part and then use e^itheta= cos theta +i sin theta

  • @ForestHills101
    @ForestHills101 6 місяців тому +1

    The transition from a sum to a product at the end was not stated clearly.
    Another approach:
    Define u(n)=z^n+1/z^n
    Given u(1)=1
    Evaluate u(n) for n=1,2,…
    [u(1)^n=u(n-1)*u(1)]
    ==> u(n+1)=u(n)-u(n-1)
    Resulting in the series:
    u(n)=1,-1,-2,-1,1,2, (repeat) 1,-1,-2,… For n=1,2..
    General solution:
    u(n)=u(6k+m), k=0,1… , m=1,2,..6
    for any n=1,2,…
    u(2024)=u(6*337+2)
    Since m=2, u(2024)=-1

  • @Galinaceo0
    @Galinaceo0 5 місяців тому

    Your handwritting is so pretty and the sound of the chalk in the chalkboard sounds so good!

  • @edsirett3860
    @edsirett3860 6 місяців тому

    The way I did it was to solve the quadratic, gives z = the complex number of 1/2 +/- root(3)/2j (j because I'm an engineer). The modulus of z is 1, so raising z to any power the modulus remains 1. Since the argument of z is +/- pi/3 the argument of z^n is +/- (n+1 mod 6)pi/3. 2024 mod 6 is 2. So z^2024 is -1. Either value of z^2024 gives -1. I find that, more often than not,working with complex numbers using modulus and argument is far simpler than real and imaginary.

  • @mikasa_sucasa
    @mikasa_sucasa 6 місяців тому +3

    Your factorization is not true. otherwise, you could rewrite 6 as binaries, 6=4+2 and you would obtain (-1)*(-1)=1. However, as franolich3 above correctly states, z^6+1/z^6=2, so your formula is not true in general. Also, please consider using brackets after multiplication, before a negative number.

  • @lukaskamin755
    @lukaskamin755 6 місяців тому +2

    Please explain how did you get that series of products, that looks like ok, but not obvious how it's derived

  • @Anshushaw-yf9qn
    @Anshushaw-yf9qn 6 місяців тому +2

    First of all z + 1/z will be always greater than 2 so this is complex no.

  • @sr6424
    @sr6424 Місяць тому

    In the last step I believe something is missed out.the first calculation is (X^2+1/X^)(X^4+1/X^4) this gives (X^6+1/X^6+X^2+1/X^2).

  • @ashokdubey8415
    @ashokdubey8415 6 місяців тому +1

    alternatively,
    given z+1/z=1 (clearly z is not=0),multiply b/s by z
    => z^2+1=z
    z^2=z-1 -----(1)
    again multiply by z
    => z^3=z^2-z =z-1-z=-1
    {by (1)}
    => z^3=-1 -----(2)
    square b/s
    =>z^6=1 -----(3)
    now z^2024={(z^6)^337*(z^2)
    }= z^2 {by (3)}
    To evaluate
    E=z^2024+1/z^2024
    =z^2+1/z^2
    =(z+1/z)^2-2
    =(1)^2-2
    =1-2=-1
    as found by Prime Newtons

    • @cret859
      @cret859 6 місяців тому

      By solving the equation you find two complex conjugate roots z= (1+i√3)/2 = 1•e^(iπ/3) = 1∠(π/3) = cos(π/3)+i•sin(π/3) and ¯z= (1-i√3)/2 = 1•e^(-iπ/3) = 1∠(-π/3) = cos(π/3)-i•sin(π/3) which have two surprising properties:
      (1) They are the reciprocal of each other : 1/z = 2/(1+i√3) = (2(1-i√3))/((1+i√3)(1-i√3)) = (2(1-i√ 3))/(1²-(-3)) = (1-i√3)/2 =¯z .
      (2) They are unity : |z| = | ¯z | = 1.
      Which means that z^n+1/z^n = z^n + (1/z)^n = z^n + (¯z)^n = (cos(π/3)+i•sin(π/3))^n + (cos(π/3)-i•sin(π/3))^n = cos(n*π/3)+i•sin(n*π/3) + cos(n*π/3)-i•sin(n*π/3) = 2•cos(n*π/3) in accordance with the Moivre's formula.
      And so z^2024+1/z^2024 = 2•cos(2024*π/3) = 2•cos(2π/3) = 2•(-½) = -1

  • @orangepanda625
    @orangepanda625 6 місяців тому +2

    Another way is to express z in exponential complex form and work from there

  • @FirstNameLastName-mw1pj
    @FirstNameLastName-mw1pj 6 місяців тому

    z^2-z+1=0-->z=1/2±i*sqrt(3)/2
    It's a sixth or five sixths of the way around the complex unit circle. Raising a number on the complex unit circle by a power simply multiplies its angle around the circle by that power.
    Because 2024 is even, but not divisible by 3, z^2024 will either be a third or two thirds of the way around the circle.
    Because two thirds of the way around the circle is also negative one third of the way around the circle and vice versa, z^-2024 will be the other one
    z^2024 will either equal -1/2+i*sqrt(3)/2 or -1/2-i*sqrt(3)/2
    With z^-2024 being the other.
    The i*sqrt(3)/2s cancel, leaving us with -1 as the answer.
    An odd power not divisible by 3 would give an answer of 1, an odd power divisible by 3 would give -2, and a power divisible by 6 would give 2.

  • @namanwadhwa6589
    @namanwadhwa6589 5 місяців тому

    It can be done really short once you find z^2+1/z^2=-1 z^2 can be replaced by complex number omega and by applying properties of cube root of unity you can get -1 in 1 step

  • @Harrykesh630
    @Harrykesh630 6 місяців тому +2

    well, if this would have been in a multiple choice test we SHOULD use complex numbers !!

  • @mr.soundguy968
    @mr.soundguy968 6 місяців тому

    Let f(n) = z^n+1/z^n. Then, f(1)=1 and f(2)=-1 (straightforward) but also the identity f(n+1)=f(n)-f(n-1) holds (verify!). So we obtain a recurrence relation and it turns out the pattern repeats every 6 integers (verify!), starting from 1. Then you only need to know what 2024 mod 6 is (it is 2) so f(2024) = f(2)=-1

  • @Cool_Name_12
    @Cool_Name_12 6 місяців тому +2

    Even though using this trick for this question is faster for these type of questions it's better and easier to turn it into a quadratic equation and solve for roots then if complex numbers come up use the polar form or just plug the roots in the second equation to get the answer. So rather than 2024 for if we had something like 2371 or something then turning the roots of quadratic equation into polar form and using the definition of the complex cosine we can generalize this equation to z^n+1/z^n=2cos(nπ/3) and plugging in 2371 for n we get 1.

  • @stevenmilos6585
    @stevenmilos6585 6 місяців тому +2

    Can you please explain why it's -1 though? If you had used two 4's, instead of one 8, as the last factors to reach 2024, it would have been an even number of -1's multiplied together, and hence would equal 1, not -1. I assume it's something periodic, but it would be nice to understand.

    • @PrimeNewtons
      @PrimeNewtons  6 місяців тому

      2024 is not a power of 4. How would you get it?

    • @random_Person347
      @random_Person347 6 місяців тому

      @@PrimeNewtons Please see my comment and example above.

  • @Pramit1156
    @Pramit1156 6 місяців тому +1

    Wait what ??? I couldn't understand the last part. How can you just multiply like that ???
    It is far better to just use the quadratic and make out the solution to be z = -w / -w^2 [w=imaginary cube root of one] Hence given expression gives rise to the sum of two imaginary cube root of one which is -1. This is a valid logic. But what did you do there ???

  • @whoh3222
    @whoh3222 5 місяців тому

    z=cos(pi/3) +- isin(pi/3), which equals e^(i*± pi/3) . So z^6 equals 1. z^2024 = (z^6)^(337+2) = z^2

  • @darthsenate7817
    @darthsenate7817 6 місяців тому

    So when you added the powers of 2 together to reach 2024, when expanding that idea to the equation you were solving were you multiplying? ((z+1/z)^1024 * (z+1/z)^512 * …) or using a power tower? ((((z+1/z)^1024)^512)^…) or are both methods just the same thing represented with different notation?

    • @arnoygayen1984
      @arnoygayen1984 5 місяців тому

      Both methods you described are different.
      Taking the first one, all the powers of 2 are added while in the second all the powers are multiplied.
      For this case, 2024 is achieved by adding powers of two.
      Taking all the additive powers out causes it to get multiplied.

  • @adw1z
    @adw1z 6 місяців тому

    General Case:
    z + 1/z is real, so equating real parts:
    rcos(t) + 1/r cos(t) = 1,
    rsin(t) = 1/r sin(t) for all t
    ==> r = 1 , cos(t) = 1/2 (WLOG t = pi/3 in principal branch)
    ==> z = exp(i*pi/3)
    ==> z^n + z^-n (for integer n)
    = exp(i*npi/3) + exp(-i*npi/3)
    = 2cos(n*pi/3)
    = 2cos(k*pi/3), where n == k mod 6
    n = 4,1024 ==> k = 4
    ==> sum is 2cos(4pi/3) = -1

  • @sreyarthapradhan9441
    @sreyarthapradhan9441 6 місяців тому

    It can be efficiently solved using complex alzebra .. just by putting 2024 in the place of n where the ans comes out to be 2cos(nπ/3)

  • @thomaswan4956
    @thomaswan4956 5 місяців тому

    We start with the given equation: z + 1/z = 1
    We rearrange this equation to solve for z:
    z^2 - z + 1 = 0
    Solving this quadratic equation, we get:
    z = (1 ± √(-3))/2
    Since z is a real number, the only valid solution is:
    z = (1 + √3i)/2
    Now, we need to evaluate the expression z^2024 + 1/z^2024.
    Using the formula for raising a complex number to a power:
    (a + bi)^n = a^n - (n * b^2 * a^(n-2))/2 + i(n * a * b^(n-1))
    Substituting z = (1 + √3i)/2, we get:
    z^2024 = ((1 + √3i)/2)^2024
    = (1 + 2024√3i - 2024*3i)/4^2024
    = (1 + 2024√3i - 6072i) / 16^2024
    Similarly, we can calculate 1/z^2024:
    1/z^2024 = 1 / ((1 + √3i)/2)^2024
    = 4^2024 / (1 + 2024√3i + 2024*3i)
    = 16^2024 / (1 + 2024√3i + 6072i)
    The final expression is the sum of these two terms:
    z^2024 + 1/z^2024
    = (1 + 2024√3i - 6072i) / 16^2024 + 16^2024 / (1 + 2024√3i + 6072i)
    This is the formula to calculate z^2024 + 1/z^2024 given that z + 1/z = 1.

  • @studyguru2656
    @studyguru2656 5 місяців тому +1

    Clearly wrong in the last step you want to sum not to multiply

  • @ibrahimhakem-lf8bu
    @ibrahimhakem-lf8bu 6 місяців тому +2

    Please explain the last step

  • @dougaugustine4075
    @dougaugustine4075 6 місяців тому +1

    That was short, simple and kind of fun.

  • @jacobgoldman5780
    @jacobgoldman5780 6 місяців тому

    how do we know that (z^1024+1/z^2024)(z^512+1/z^512)...(z^8+1/z^8)=(z^2024+1/z^2024)? arent there going to be many more terms than just those two for example z^1024/(z^512 times z^256...)=z^1024/z^1000=z^24?

  • @RashmiRay-c1y
    @RashmiRay-c1y 2 місяці тому

    Let z=e^it. Then z+1/z= 2cos t = 1 > cos t = 1/2 > t=pi/3 + 2pi n, n being an integer. Thus, z^2024 = e^2024(pi/3+2pi n)i = e^(674 pi i) e^(2 pi i/3) = e^(2pi i/3) = -e^(-i pi/3). So, z^2024 + z^(-2024) = -2 cos pi/3 = -1.

  • @mikasa_sucasa
    @mikasa_sucasa 6 місяців тому

    To get 1000 from binary, you could have started with the sum of all binaries below 1024, starting with 1, which would have resulted in 1023. Now you know you need to subtract 23. 23 in binaries is 16+4+2+1, so you need to omit these, but take all the others

  • @franciscook5819
    @franciscook5819 6 місяців тому +2

    I think you made a leap too far.
    2024=1024+512+256+64+32+8 (so far so good)
    (z+1/z)^2=z^2+1/z^2 + 2 = 1^2
    z^2+1/z^2 = -1 similarly for every time the power is doubled but ...
    (z^1024 + 1/z^1024)(z^512 + 1/z^512)= (-1)(-1) = z^1536 + 1/z^1536 + (z^512 + 1/z^512)
    = z^1536 + 1/z^1536 - 1
    so z^1536 + 1/z^1536 = 1 + 1 = 2
    so multiplying z to the power of two expression by by another, to a different power of two, is NOT the same multiplying the -1s together (note that it can work out that way e.g. using the last two powers, 32 and 8).
    same for 256 and 128 and for 64 and 32
    The easier is solve the quadratic (z+1/z=1 => z² -z +1 = 0 => z = (1±√3)/2=e^iπ/3 or e^i5π/3
    Raise to the 2024th power (2024=2 mod 6)
    gives z^2024 = e^i2π/3 or e^i4π/3 or (-1 ±√3/2
    both give -1 when subbed in to z^1024 + 1/z^1024

  • @joyrichard6971
    @joyrichard6971 6 місяців тому +3

    Thank you sir. Great explanation. Thank you so much you are awesome. Love from India. 😊😊

  • @rakeshsrivastava1122
    @rakeshsrivastava1122 2 місяці тому

    We get z^3 +1=0 from where z^3=-1. z^2024=(z^3)^674.z^2=z^2.Similarly for 1/z^2024.

  • @DaneBrooke
    @DaneBrooke 4 дні тому

    For typing purposes, please let me represent "z to the n plus one over z to n" as Z(n). It looks to me like you used Z(a)Z(b) = Z(a+b). Which has not been established.

  • @jb31842
    @jb31842 6 місяців тому

    You could have done the breakdown of 2,024 into a sum of powers of 2 easily, assuming that the calculator app on your table has a programmer mode: Just convert 2,024 from decimal to binary...

  • @surendrakverma555
    @surendrakverma555 6 місяців тому

    Very good. Thanks 🙏

  • @SnenhlanhlaZinhlekhumalo
    @SnenhlanhlaZinhlekhumalo 6 місяців тому

    where does that 2 you multiplied with come from

  • @ibnSafaa
    @ibnSafaa 6 місяців тому

    Just substitute z = cosx+isinx
    and 1/z = cosx-isinx
    So z+1/z=2cosx
    2cosx=1 » x=π/3
    So then :
    z²⁰²⁴+1/z²⁰²⁴=2cos(2024x)
    = 2cos(2024×π/3) = -1

  • @AzmiTabish
    @AzmiTabish 6 місяців тому +1

    Thank you Sir.

  • @HusseinAlgubili
    @HusseinAlgubili 6 місяців тому +3

    Du you teach math on school, are you official a teacher?

  • @seanmsgjuan
    @seanmsgjuan Місяць тому

    Maybe I'm missing something but I don't believe this solution is complete. I haven't finished working out the answer yet, but multiplying the power of 1024 and the power of 512 is not the same as squaring; you get a power of 1536 plus a power of 512 (which is -1), equaling 1, so isolating 1536 is then 2. (I believe)

    • @seanmsgjuan
      @seanmsgjuan Місяць тому

      Now that I've worked it out further, there is a pattern to the powers, every time you multiply z^n + 1/z^n by z + 1/z (which is 1) , you get z^n+1 + 1/z^n+1 + z^n-1 + 1/z^n-1. What this yields is a pattern of 1,-1,-2,-1,1,2. You do have the right result, but I don't think I agree with the assumptions made to get there.

    • @seanmsgjuan
      @seanmsgjuan Місяць тому

      (and please forgive my way of typing it out which may not follow the right order of operations, it's challenging to do on a phone keyboard!)

  • @komalshah1535
    @komalshah1535 6 місяців тому

    What's the name of the device are you using?

  • @SolomonTradez
    @SolomonTradez 6 місяців тому

    where can i get your t shirts

  • @KushalNetam-pq9qz
    @KushalNetam-pq9qz 5 місяців тому

    How electron is formed?

  • @shmuelzehavi4940
    @shmuelzehavi4940 16 годин тому

    Another method:
    z + 1/z = 1 ⟹ z^2 - z + 1 = 0 ⟹ z^3 + 1 = 0 ⟹ z^3 = - 1
    ⟹ z^2024 = z^2025/z = (z^3 )^675/z = (-1)^675/z = (-1)/z = - 1/z
    ⟹ z^2024 + 1/z^2024 = - 1/z - z = - (z + 1/z) = - 1

  • @saiful6378
    @saiful6378 6 місяців тому

    Cant u solve using the property of w(omega)
    Complx cube root of unit?

  • @zervidas
    @zervidas 5 місяців тому

    I seem to be familiar with the scientific calculator you use

  • @mohammadkhorasani5725
    @mohammadkhorasani5725 5 місяців тому

    If z^2024 is -1, isn't the final answer -2 ?

  • @luizmagalhaes518
    @luizmagalhaes518 6 місяців тому

    Nice work,thanks

  • @Arkapravo
    @Arkapravo 6 місяців тому +1

    That is elegantly done, and I used De Moivre's theorem and overcomplicated it!

  • @PureHanbali
    @PureHanbali 6 місяців тому

    It could've been solved faster if z was replaced with a negative omega.

  • @Matthew-he3jw
    @Matthew-he3jw 5 місяців тому

    Like many others I would like to know what happened to the missing 2 terms from each multiplication at the end;
    (z^a + z^(-a))x(z^b + z^(-b))=
    (z^(a+b) + z^(-(a+b)))x
    (z^(a-b) + z^(-(a-b)))

  • @84ateo27
    @84ateo27 5 місяців тому

    4ever fascinating by calculating 😮

  • @逸園-無毒果園
    @逸園-無毒果園 5 місяців тому

    z^3=-1,we have z^2024=z^2, so z^2024+(1/z^2024)=z^2+(1/z^2)=-1

  • @rhc-weinkontore.k.7118
    @rhc-weinkontore.k.7118 Місяць тому

    nice. but I am not used to the notation -1 x -1 x -1 x ..... better to write -1 x (-1) x (-1) x ....

  • @MothNeo
    @MothNeo 6 місяців тому

    those who stop learning, stop living!

    • @timirbiswas3834
      @timirbiswas3834 6 місяців тому

      Yeah, its right because if someone is learning to stop everywhere he becomes a dead body !!

  • @anghme28ang11
    @anghme28ang11 3 місяці тому

    I thought all you had to do is since the power is even, then it is negative

  • @NotBeluga2357
    @NotBeluga2357 6 місяців тому

    z + 1/z = 1
    => z^2 - z + 1 = 0
    Multiply by z + 1 both sides such that z not = -1
    => z^3 + 1 = 0
    => z = -1, -w, -w^2, where w,w^2 = complex cube roots of unity
    But z not = -1
    => z = -w, -w^2
    => z^2024 = (-w)^2024 or (-w^2)^2024 = w^2,w
    We know that w^3 = 1 => w^2 = 1/w
    z = w, 1/w
    => z ^2024 + 1/z^2024 = w + 1/w = w^2+1/w = -1

  • @thecrazzxz3383
    @thecrazzxz3383 5 місяців тому

    But what is Z?

  • @mostafakhelifi7566
    @mostafakhelifi7566 5 місяців тому

    z*2024+z*-2024=2cos(2024.p/3)=2cos(2p/3)=-1

  • @hellovat_youtube
    @hellovat_youtube 6 місяців тому

    It's not true. The sum of two positive values can't be negative! (Added: here we have another case)

    • @PrimeNewtons
      @PrimeNewtons  6 місяців тому +1

      Positive? Where did you get that?

    • @hellovat_youtube
      @hellovat_youtube 6 місяців тому

      @@PrimeNewtons z²⁰²⁴=(z²)¹⁰¹². Any real number raised to even power is positive. Also 1/(z²⁰²⁴) is positive. And the sum of these two positive values is also positive

    • @hellovat_youtube
      @hellovat_youtube 6 місяців тому

      @@PrimeNewtons if z is real. z² is positive. 1/z² is also positive. How can the sum of these positive values be equal to -1? The same with 2024. Or am I missing something?

    • @PrimeNewtons
      @PrimeNewtons  6 місяців тому +1

      @hellovat_youtube You assume z is real. You can't assume it's real. In fact there is no real number z such that the sum of z and its reciprocal is equal to 1. Clearly, z is not real.

    • @hellovat_youtube
      @hellovat_youtube 6 місяців тому +1

      @@PrimeNewtons yes, you are right! I'm used to that usually variables are real by default and if they are not it is mentioned in the conditions. As you noticed here we have z+1/z=1, and this doesn't have real roots. A kind of implicit condition, that z is not necessary real. Thank you

  • @gigachadkartik
    @gigachadkartik 5 місяців тому

    You found z^2024 NOT z^2024+1/z^2024

  • @BornInOz
    @BornInOz 6 місяців тому

    Cool!

  • @ouroboros7388
    @ouroboros7388 6 місяців тому

    Awesome hehe

  • @random_Person347
    @random_Person347 6 місяців тому +2

    I spot something wrong in your last step. To simplify, assume that what you want to calculate is:
    z^1536 + 1/z^1536
    and note that 1536 = 1024+512
    We know that z^n + 1/z^n = -1 when n= 512 or 1024.
    According to the logic of your last step, since you are multiplying two terms each of which has the value -1 you might expect the answer to be (-1)(-1) = +1
    But:
    (z^1024 + 1/z^1024)*(z^512 + 1/z^512) = (-1)^2 = +1
    Distributing terms gives us:
    z^(1024+512) + z^(512-1024) + z^(1024-512) + 1/z^(1024+512) = 1
    z^1536 + 1/z^512 + z^512 + 1/z^1536 = 1
    Re-arranging:
    z^1536 + 1/z^1536 + (z^512 + 1/z^512) = 1
    z^1536 + 1/z^1536 + (-1) = 1
    z^1536 + 1/z^1536 = 2

  • @neelampandey8047
    @neelampandey8047 5 місяців тому

    Done in 5 seconds😎

  • @pedrojesus4967
    @pedrojesus4967 6 місяців тому

    Cool

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 3 місяці тому

    z+1/z=1 then z^2024+1/(z^2024)=-1

  • @michallesz2
    @michallesz2 5 місяців тому

    z + 1/z =1 ERROR

  • @mdabdulrouf5141
    @mdabdulrouf5141 5 місяців тому

    z+1/z=1,z^2-z+1=0,(z+1)(z^2-z+1)=0(z+1),z^3+1^3=0,
    z^3+1=0,z^3=-1,z^3×z =-1×z,z^4=-z
    z^4+1/z^4=-z-1/z=-(z+1/z)=-1

  • @Sayan_Shankhari
    @Sayan_Shankhari 6 місяців тому

    f(2n) = -1

    • @dirklutz2818
      @dirklutz2818 6 місяців тому

      No, f(0)=+2 and f(6)=+2

    • @Sayan_Shankhari
      @Sayan_Shankhari 6 місяців тому +1

      @@dirklutz2818 ok, sorry , i meant, f(n^2) = -1

  • @shivx3295
    @shivx3295 5 місяців тому

    Did it in mind

  • @RockyKumar-yi9kc
    @RockyKumar-yi9kc 6 місяців тому

    2 hoga answer

  • @vs618s1liy7b
    @vs618s1liy7b 5 місяців тому

    Z^3=1 이용하면 쉽게 풀수 있는데 왜 저렇게 힘들게 풀이 하는지 이해가 안되네

  • @adgf1x
    @adgf1x 5 місяців тому

    expn=1+1=2

  • @robertcotton8481
    @robertcotton8481 6 місяців тому

    I should take back like bad logic

    • @PrimeNewtons
      @PrimeNewtons  6 місяців тому

      You should only like a video after watching it. That way, you don't have to comment on taking it back. Also, you should help others understand why the logic is bad. I want to learn too.

    • @robertcotton8481
      @robertcotton8481 6 місяців тому +1

      @@PrimeNewtons (z^a+z^(-a))(z^b+z(-b))=(z^(a+b) +z^(-(a+b)) + z^(a-b) +z^(b-a) two extra terms come out in the product only if prove them irrelevant could you ignore....

  • @tonyperring
    @tonyperring 6 місяців тому

    Think it's +1

  • @Bertin-q3y
    @Bertin-q3y 6 місяців тому

    Reponse=-1

  • @dominiquebercot9539
    @dominiquebercot9539 6 місяців тому

    J’ai le même résultat avec une autre méthode, pas plus rapide!!!!

  • @johnconrardy8486
    @johnconrardy8486 6 місяців тому

    wow

  • @สุธีร์แซ่ฮุ้น
    @สุธีร์แซ่ฮุ้น 5 місяців тому

    -1

  • @aneeshbro
    @aneeshbro 6 місяців тому +1

    pls solve this question from my homework its too hard for me. If a=7-4sqrt3, find sqrt a + 1/sqrt a

    • @vedwargantiwar4610
      @vedwargantiwar4610 6 місяців тому

      sqrt(a)=sqrt(4)-sqrt(3)
      I think you can solve the rest by yourself easily

    • @aneeshbro
      @aneeshbro 6 місяців тому

      @@vedwargantiwar4610 nah sqrt(a)=sqrt(7-4*sqrt(3))

    • @vedwargantiwar4610
      @vedwargantiwar4610 6 місяців тому

      ​@@aneeshbro my guy
      sqrt(7-4sqrt(3))=sqrt4-sqrt3

    • @vedwargantiwar4610
      @vedwargantiwar4610 6 місяців тому +2

      @@aneeshbro the answer is 4 I think so

    • @robertpearce8394
      @robertpearce8394 6 місяців тому

      Somebody solved that for you on bprp.