Fermat's unique method of integration.

Поділитися
Вставка
  • Опубліковано 28 сер 2023
  • 🌟Support the channel🌟
    Patreon: / michaelpennmath
    Channel Membership: / @michaelpennmath
    Merch: teespring.com/stores/michael-...
    My amazon shop: www.amazon.com/shop/michaelpenn
    🟢 Discord: / discord
    🌟my other channels🌟
    mathmajor: / @mathmajor
    pennpav podcast: / @thepennpavpodcast7878
    🌟My Links🌟
    Personal Website: www.michael-penn.net
    Instagram: / melp2718
    Twitter: / michaelpennmath
    Randolph College Math: www.randolphcollege.edu/mathem...
    Research Gate profile: www.researchgate.net/profile/...
    Google Scholar profile: scholar.google.com/citations?...
    🌟How I make Thumbnails🌟
    Canva: partner.canva.com/c/3036853/6...
    Color Pallet: coolors.co/?ref=61d217df7d705...
    🌟Suggest a problem🌟
    forms.gle/ea7Pw7HcKePGB4my5

КОМЕНТАРІ • 64

  • @xizar0rg
    @xizar0rg 10 місяців тому +57

    History of math, both of things the people did, as well as the math they developed, is always an interesting dive.

  • @TheLowstef
    @TheLowstef 10 місяців тому +17

    For the second integral, you wrote it wrong in the beginning. Should've been 1/x^n and you just put x^n

  • @andrewdjang2080
    @andrewdjang2080 10 місяців тому +17

    With regards to the n=1 case for negative exponents, I would love to see your take on historical methods for finding the “quadrature of the hyperbola”!

  • @ardan981
    @ardan981 10 місяців тому +11

    In the vein of integration before calculus, pascal's method of integrating the sine and cosine is fascinating and requires only geometry

    • @19divide53
      @19divide53 10 місяців тому +1

      Where might one find a discussion or an account of such a method?

    • @ardan981
      @ardan981 10 місяців тому +1

      @@19divide53 Dirk Jan Struik's book "A Source book in Mathematics, 1200-1800" has a whole load of fascinating pieces of math history. This particular example is on page 238

  • @goodplacetostop2973
    @goodplacetostop2973 10 місяців тому +22

    13:56 Oh so that time, the margin was large enough for that proof?

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 10 місяців тому

      This wasn't about number theory, so it wasn't written in the margin of Diophantus' book. ;)

  • @ianfowler9340
    @ianfowler9340 10 місяців тому

    So damn cool!! I first encountered this as an undergraduate in a history of mathematics course (back in the 70's). Just as remarkable (a nod to Fermat) is his method of finding tangents to polynomials as well as Descarte's method for finding tangents - double roots. Worthy of a video? All pre-Newton. Bloody marvelous. Long live infinite geometric series.

  • @bjornfeuerbacher5514
    @bjornfeuerbacher5514 10 місяців тому +10

    This looks like the reverse operation to the q(uantum) derivative?

    • @CatholicSatan
      @CatholicSatan 10 місяців тому +5

      I was thinking the same - but the quantum derivative arrived only in the early 20th century. May be some delving into the history might show something similar to the quantum derivative much earlier, an obscure bit of Euler perhaps...?

  • @ericfielding668
    @ericfielding668 8 місяців тому

    Fun to watch - to get an inkling of what Fermat thought - and entirely sensible

  • @bentationfunkiloglio
    @bentationfunkiloglio 10 місяців тому

    This was so interesting and intuitive.

  • @get2113
    @get2113 10 місяців тому

    Very interesting. Nicely illustrates that the limit has to be the same regardless of the sequence of simple functions.

  • @henrytzuo8517
    @henrytzuo8517 2 місяці тому

    Thank you! 🙏🙏🙏

  • @ianfowler9340
    @ianfowler9340 10 місяців тому +1

    Did you also know that any infinite series that you can prove converges by the ratio test intuitively tells you something very remarkable. Such a series behaves more and more and more like an infinite geometric series the further and further you go out in the series. The ratio |a(n+1) / a(n)| as n --> inf. approaches the magic value of |r| < 1 for an infinite geometric series. Long live convergent infinite geometric series.

    • @chasebender7473
      @chasebender7473 9 місяців тому

      In one sense yes, and in another sense no. In the sense you mean, only the "tail" of the series behaves more and more like a geometric series, while the values of the series are much better approximated by the values up to a finite order approximation. If we consider our series to take complex inputs, then the radius of convergence tells us how far we are away from a singularity, where either the (tail of the) series behaves like 1/z^n or like exp(-z). The series for exp(z) has an infinite radius of convergence, while the standard geometric series converges to (1-z)^-1 which blows up at z=1. This comparison shows that even different tails can exhibit different properties, since no finite order approximation really captures the behavior of the series near z=1.

  • @hcgreier6037
    @hcgreier6037 10 місяців тому +1

    Very nice! The masters of the past had their own methods...

  • @aqeel6842
    @aqeel6842 8 місяців тому

    This is genius. Even if it you'd have to prove it 'converges' to the true value of the integral (as given by the limit of Riemann sums), it's still a very ingenious idea.

  • @jotajaviergonzalezgarcia7504
    @jotajaviergonzalezgarcia7504 10 місяців тому

    Love your content

  • @mikek3094
    @mikek3094 10 місяців тому +1

    Good stuff! Can you make a video about Donald Knuth’s approach, where he uses Bachmann/Landau notation to define derivatives? Thanks!

  • @TymexComputing
    @TymexComputing 10 місяців тому

    Partitioning problems :) I would blindly give Fermat my disk for partitioning and be happy with the sector ranges :)

  • @siquod
    @siquod 10 місяців тому +6

    Isn't there a negative sign missing in the second integral result?

    • @Alex_Deam
      @Alex_Deam 10 місяців тому +1

      No, because a is on the lower bound

    • @siquod
      @siquod 10 місяців тому +1

      @@Alex_DeamAha, I didn't see that.

  • @Patapom3
    @Patapom3 10 місяців тому

    Amazing!

  • @MathOrient
    @MathOrient 10 місяців тому

    Wow, didn't know about this one :)

  • @hugh081
    @hugh081 10 місяців тому +1

    You could also just take the limit of (1-q)/(1-q^(n+1)) using L'Hopital's Rule to get 1/(n+1) without bothering with the factorisation. Not sure that's any simpler though, both quite simple.

    • @nanamacapagal8342
      @nanamacapagal8342 10 місяців тому +3

      L'Hopital would be useful to Fermat but unfortunately it didn't exist yet. L'Hopital's rule was only discovered in 1694, well after Fermat's death in 1665

  • @user-oe5eg5qx4c
    @user-oe5eg5qx4c 10 місяців тому

    Wiki says a mathematician named Cavalieri used geometry to prove all positive integer cases.

  • @TheEternalVortex42
    @TheEternalVortex42 10 місяців тому +1

    Really cool that Fermat used this method, I suppose it was based on Archmedes 'method of exhaustion'? He probably also computed the lower bound of inner rectangles to ensure they got the same value.
    So the general formula would be that ∫ f(t) dt = lim_{q->1} a (1 - q) (f(a) + f(aq) q + f(a q^2) q^2 + .... )
    I wonder if there's any integrals that this makes easier than the "standard" Riemann sum. It seems like the extra q factors make it not work out nicely unless f power function.
    For example, if we want to integrate e^t we get a (1 - q)(e^a + q e^(aq) + q^2 e^(aq^2) + ... ) and I'm not sure that you can do much with that

    • @19divide53
      @19divide53 10 місяців тому +1

      If we define e^x as the limit of (1+x/n)^n, then we might consider f(n,x)=(1+x/n)^n.
      Let g(n,x)=x^n, then f(n,x)=g(n, (x+n)/n). By general properties of integrals (as areas), its integral on (0,t) is 1/n^n times the integral of g(x+n). But that's just the difference of the results from Fermat's method for x^n by taking x=t+n and x=n. Therefore, integral of f(n,x) on (0,t) is ((t+n)^(n+1)-n^(n+1))/(n^n(n+1)) = ((t+n)*(1+t/n)^n-n)/(n+1).
      Since t is a finite number, (t+n)/(n+1) tend to 1 as n approaches infinity. n/n+1 tends to 1 as well, and (1+t/n)^n tends to e^t by definition. So the integral tends to e^t-1. In other words, the integral of e^x on (0,t) is e^t-1.

  • @W4TzReAdY
    @W4TzReAdY 10 місяців тому

    5:43 this actually corresponds to the LIMIT of the sum of the geometrical series that otherwise would be 1-r^n instead of 1 in the numerator. This is not really mentionned and it is not entirely rigourus if I am understanding well... I guess we would retrieve the same expression in the end but I think it is worth mentionning.

    • @RexxSchneider
      @RexxSchneider 10 місяців тому

      You get the same expression back, which should be expected since 1-q^(n+1) = (1-q)(1+q+q^2+ ... + q^n) identically for all q by polynomial division/multiplication depending on the direction you're working. You see the same possibility around 12:49 with the finite geometric series in the denominator. However, you need to cancel the (1-q) in either case so that the sum can be evaluated as q→1.

  • @Cor97
    @Cor97 10 місяців тому

    There is another approach of this integral which makes use of the notion that the integral of x^n from a to b equals the area under the curve. If it is area, it must satify the basic properties of area (linearity, additivity, scale invariance, translation invariance and normalization of area, ie the integral of 1 from 0 to 1 must be 1. When these conditions are met, we will find the integral from 0 to a of x^n equals 1/(n+1) a^(n+1). One can proof this without any limiting proces, just finite calculations, for all rational numbers.

    • @vangrails
      @vangrails 10 місяців тому

      Do you have a link to an explanation of that method?

    • @Cor97
      @Cor97 10 місяців тому

      Yes I have: ua-cam.com/video/Js2mwsHc4p4/v-deo.html

    • @19divide53
      @19divide53 10 місяців тому

      If we define I(n,t) to be the integral of x^n dx on (0,t) for n>=0, and similarly the integral of x^n on (t, infinity) for n

    • @Cor97
      @Cor97 10 місяців тому

      'and the same integral ..'?? I take it that you try to extend the method Wildberger explained for n being a real number. As real numbers themselves are the result of an infinite process, I don't expect a finite process for such an integral. A less ambittous extension would be if you try to extend it for all integers n. However, with the integral of 1/x from a to b you run already into a problem. The result is not a rational number and therefore can only be approximated with with finite processes. I will think about this a bit more.

  • @TymexComputing
    @TymexComputing 10 місяців тому

    There is already 1/4 of a million of subscribers :) - it makes 1/28000 people on earth are interested for example of Fermat way of integration :) (instead of the lame Gaussian cubatures and quadratures that everybody knew about ;)

  • @salcanoman
    @salcanoman 10 місяців тому +1

    A question: In the second part we are working on (1/x^n), so why on the right part of the blackboard the integral is written for x^n ? Thanks.

    • @davidt939
      @davidt939 10 місяців тому

      Exactly, trouble at 8:56, just add a minus sign to the n exponent 😊

  • @topquark22
    @topquark22 10 місяців тому +4

    Can a similar approach be used on functions other than x^n? In this case a sequence of partition points X_n = (a, q a, q^2 a, ... ) is used to generate the rectangles. For other functions f(x) you would have to use a different sequence of partition points. So can this method be generalized?

    • @zlugio803
      @zlugio803 10 місяців тому

      Well you could possibly get the Taylor series of said function and integrate it

  • @tomkerruish2982
    @tomkerruish2982 10 місяців тому +2

    Is this the inspiration for q-analogs?

  • @mathperson4617
    @mathperson4617 10 місяців тому

    And also can you help whit the other integration fórmulas ?
    PLEAS

  • @bb5a
    @bb5a 10 місяців тому

    Is this the first video where peach-colored chalk has made an appearance?

  • @prajwalkandel6257
    @prajwalkandel6257 10 місяців тому

    can you do it in same way but for sin(x)?

  • @user-pr6ed3ri2k
    @user-pr6ed3ri2k 10 місяців тому

    7:52 q>1

  • @somtochukwu8730
    @somtochukwu8730 10 місяців тому

    Pls who knows how he factored out 1-q in the denominator at 6:28

  • @mathperson4617
    @mathperson4617 10 місяців тому

    Hello,
    Mi name is Josafat and please I need you yo make a video about the integral of e^x
    I try to bild these resultados but I don't know how yo start

  • @jamesfortune243
    @jamesfortune243 10 місяців тому

    That was mentally stimulating, even out of the box. 🙂 But I don't see any advantage of geometric partitioning of the rectangles.

  • @paulkohl9267
    @paulkohl9267 10 місяців тому

    Fermat's integration method "is like maybe" Quantum / Greek

  • @gp-ht7ug
    @gp-ht7ug 10 місяців тому

    Want to know more about Fermat

  • @divisix024
    @divisix024 10 місяців тому

    Does the method work for fractional exponents? If so, how?

    • @karelvanderwalt3625
      @karelvanderwalt3625 10 місяців тому

      proof fractional exponents via implicit differentiation

    • @leif_p
      @leif_p 10 місяців тому +1

      Yes, nothing he did assumed n was an integer.

  • @roberttelarket4934
    @roberttelarket4934 10 місяців тому

    Fermat was the real inventor of The Differential Calculus!

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 10 місяців тому +1

      Huh? This was about integrals, not about differentials.

    • @roberttelarket4934
      @roberttelarket4934 10 місяців тому

      @@bjornfeuerbacher5514: I'm aware of that but just wanted to point that out!

  • @roberttelarket4934
    @roberttelarket4934 10 місяців тому +3

    Too bad Fermat was a jurist and not a full time mathematician!