The Secret to 90%+ Accuracy in Text Classification

Поділитися
Вставка
  • Опубліковано 1 лют 2025

КОМЕНТАРІ • 69

  • @PritishMishra
    @PritishMishra  2 роки тому +9

    Please Subscribe.

  • @ankitnsfw
    @ankitnsfw Рік тому +11

    from the last 3-4 hrs i am trying to find a step-by-step proper material on how to fine to BERT with your dataset , finally found it , thank for making this video.

  • @varunparmar4724
    @varunparmar4724 3 місяці тому +1

    The video quality and the way you explained everything is Top-Notch. Thank you for this video

  • @viswanathhemanth
    @viswanathhemanth Рік тому +11

    Really really amazing Pritish. This video is not like those boring lecture videos. The animations are amazing. your explanation is clear with goof pronunciation. Amazing. Keep it up. I hope you continue posting these type of videos. ❤❤❤❤

  • @zhwzh_
    @zhwzh_ 11 місяців тому +1

    Thanks a lot for this video. It's more than a simple tutorial, you really explain the most important concepts in a way that's clear

  • @villurignanesh8458
    @villurignanesh8458 7 місяців тому +2

    Amazing work Pritish. You definitely deserve more views. Hopefully you will get it soon❤.

  • @EduCentre-D4
    @EduCentre-D4 10 місяців тому

    best explanation of fine tuning of bert , got good understanding from video thanks

  • @enjoycoding7898
    @enjoycoding7898 Рік тому

    This is the best way of explaining the Models! Keep it up!!! I expect some plots/graphs on accuracy and predictions details!

  • @hamzaomari7052
    @hamzaomari7052 9 місяців тому +1

    You have so much potential, amazing!

  • @zeelthumar
    @zeelthumar Рік тому +1

    Explanation done by you is the best compared to any others....awesome work Pritish ....keep it up

  • @AdityaBhat-m5v
    @AdityaBhat-m5v Рік тому

    best video i could find , easy, simple and to the point.

  • @surendrareddydwarampudi4749
    @surendrareddydwarampudi4749 7 місяців тому

    Best explanation in a simple and easy way.

  • @shahzadsohail6283
    @shahzadsohail6283 Місяць тому +1

    i want to save this model and then convert it to tflite and then predict using tflite model what to do

  • @bhawanirathore3105
    @bhawanirathore3105 3 дні тому

    Hi great Vedio,
    Please add for other models like laama 3 and deep seek for text classification

  • @DarkLord79799
    @DarkLord79799 4 місяці тому

    Awesome video bro keep it up. ❤❤

  • @wen2498
    @wen2498 Рік тому +1

    Very nice video; I wonder if it is possible to save the classifier for future use.

    • @PritishMishra
      @PritishMishra  Рік тому

      You can save the classifier as follows:
      classifier.save("filename.h5")

  • @dhiraj223
    @dhiraj223 2 роки тому +2

    Very Nice Explanation and nice Animation 🔥🔥🔥🔥
    Keep it up 👍🏻

  • @TheFitsome
    @TheFitsome 3 місяці тому

    Well done, Mishra

  • @patrickahrend298
    @patrickahrend298 Рік тому

    Can you do a video on how to do Natural language inference with Bert? Thanks!

  • @World-vf1ts
    @World-vf1ts 3 місяці тому

    Can you please explain how I can retrain the same model (after exporting) with new data. Basically, I want to train the same model in stages. Please help.

  • @uiandwe
    @uiandwe Рік тому

    thank bro!
    Good explanation, it was easy to understand

  • @devadasdamodharan1511
    @devadasdamodharan1511 11 місяців тому

    Awesome explanation 👌

  • @maheshbhosale3306
    @maheshbhosale3306 4 місяці тому

    I am very impressed with the way you teach.

  • @Ryan-Pot
    @Ryan-Pot Рік тому

    recreated this in pycharm, when i want to use the model (i saved it first) i get this error: TypeError: No common supertype of TensorSpec(shape=(None, None), dtype=tf.int32, name=None) and TensorSpec(shape=(None, 78), dtype=tf.int64, name='input_ids_attention_mask'). is there a way to fix this without retraining the model?

    • @Ryan-Pot
      @Ryan-Pot Рік тому

      all i want is to calculate precision, recall and f1 score of the model btw.

  • @abhijitsarkar3589
    @abhijitsarkar3589 2 місяці тому

    Thanks brother

  • @user-wr4yl7tx3w
    @user-wr4yl7tx3w Рік тому +1

    I’m not clear on what pooling in the video is.

  • @valorw1788
    @valorw1788 3 місяці тому

    Hi what if i want to train it on unsupervised learning like kmeans clustering?

  • @chintanparmar7533
    @chintanparmar7533 Рік тому

    which model would be suitable for classifying if text is written by human or generated by LLM?

  • @05h92
    @05h92 10 місяців тому

    for the bert text summarization can we do in this way????

  • @syedshahab8471
    @syedshahab8471 Рік тому

    Absolutely brilliant!

  • @FREeZe_Reaper
    @FREeZe_Reaper 8 місяців тому

    so we don't need to freeze any layer of the pretrained model? i have a problem this is with VIT my image shape is 24x24 but the pretrained model input shape is 224x224 it is possible to fix that? and the learning parameter are 8900000 and i want to fine tune it on my dataset

  • @snapninjasquad_ad-e3t
    @snapninjasquad_ad-e3t Місяць тому

    Can you make a llm by own data like chatgpt

  • @DonaldTrump101-o7d
    @DonaldTrump101-o7d Рік тому

    pritish will you create a video of simulating a robotic arm which is controlled by a GPT-language model , and can cook food in simulation ?

  • @markinius8866
    @markinius8866 7 місяців тому

    I'd like to ask, a paper I am trying to use for another dataset said they had optimal performance at epochs=50, however at epochs=3, it's already getting decent performance. May I ask why this is? Also, do you run bert in inference mode?

  • @AbhishekBade1310
    @AbhishekBade1310 11 місяців тому

    i have some text files in which there are elements and their values but the pattern in which the text is displayed in the file are different from file to file. Is it possible to train Bert on these files so that when I ask it to extract only the element names and their corresponding values it will do that regardless of the text pattern?

  • @saimanideeep8716
    @saimanideeep8716 Рік тому

    Excellent video. I got one error while running the code.
    inputs = tokenizer(['Hello world', 'Hi how are you'], padding=True, truncation=True,
    return_tensors='tf')
    inputs
    For this line I got the following error:
    TypeError Traceback (most recent call last)
    Cell In[50], line 1
    ----> 1 inputs = tokenizer(['Hello world', 'Hi how are you'], padding=True, truncation=True,
    2 return_tensors='tf')
    3 inputs
    TypeError: 'BertTokenizer' object is not callable
    Can you please help?

  • @jentertainment4239
    @jentertainment4239 Рік тому

    Can we use bert for context aware similarity?

  • @honestklee
    @honestklee 6 місяців тому

    How to fine tune csv dataset on BERT model

  • @ruizhou1243
    @ruizhou1243 Рік тому

    it show me train_dataset is not defined????

  • @srujan-vy9by
    @srujan-vy9by 10 місяців тому

    How to import our dataset and train and test them

  • @Officer-kd6
    @Officer-kd6 Рік тому

    great video, can you make a video on question answering? and can we make a chatbot just using bert or will we be needing a Decoder along with bert for that

  • @sherryhp10
    @sherryhp10 Рік тому

    Very nicely explained

  • @abhishekpawar1207
    @abhishekpawar1207 Рік тому

    Really Good video.

  • @silasdhayanand8708
    @silasdhayanand8708 8 місяців тому +1

    how to actually decode the output back to the classes is something this video did not explain : \

  • @WoWmastersonTuralyon
    @WoWmastersonTuralyon Рік тому

    Hey, nice video! Just one question: how can you serialize a custom Keras model, such as yours -- class BERTForClassification(tf.keras.Model)?

    • @PritishMishra
      @PritishMishra  Рік тому +1

      You can serialize a custom Keras model like our BERTForClassification using the model.save('filename') method. This will save the entire model, including the architecture, weights, and optimizer, to a file. You can then load the saved model using the tf.keras.models.load_model('filename') method.
      If the model.save() method doesn't work for you, you can use model.save_weights() instead. This method saves only the weights of the model to a file, so you will need to define the model architecture exactly as it was at the time of saving the weights in order to load the saved weights correctly.
      model = ...
      model.load_weights('/path/to/file')

    • @WoWmastersonTuralyon
      @WoWmastersonTuralyon Рік тому

      @@PritishMishra This doesn't work. This is my code:
      classifier.save(save_path)
      classifier_2 = tf.keras.models.load_model(save_path)
      I get this error:
      TypeError: No common supertype of TensorSpec(shape=(None, None), dtype=tf.int32, name=None) and TensorSpec(shape=(None, 27), dtype=tf.int64, name='input_ids/attention_mask').

    • @PritishMishra
      @PritishMishra  Рік тому

      @@WoWmastersonTuralyon Could you please try with model.save_weights? Please let me know if this causes any errors.

    • @WoWmastersonTuralyon
      @WoWmastersonTuralyon Рік тому +1

      ​@@PritishMishra Yes, upon further research I came upon this solution too. The code that works looks like this:
      classifier.save_weights(save_path)
      classifier_2 = BERTForClassification(bert_model=transformers_model, num_classes=no_classes)
      classifier_2.load_weights(save_path)
      example_input = "just some dummy input string"
      encoded_example = tokenizer.encode(example_input, padding=True, truncation=True, return_tensors="tf")
      _ = classifier_2(encoded_example)
      The input is needed, because the bert input layer has a dynamic size, and gets built after running an input through it. Otherwise, other functions regarding the model (such as classifier_2.summary()) would return an error.
      Thanks for your help!

    • @JeisonJimenez-tb3nc
      @JeisonJimenez-tb3nc Рік тому

      @@WoWmastersonTuralyon Thank you very much for the answer, but I don't understand why the answer that the model gives me when I do classifier_2(encoded_input) is:
      and not the category my input should be in

  • @Professor_The_Trader
    @Professor_The_Trader 4 місяці тому

    Thanks

  • @manojbajpai7346
    @manojbajpai7346 2 роки тому

    Nice explanation.

  • @batman9937
    @batman9937 Рік тому +3

    bert is not an LLM

    • @HarshPatel-iy5qe
      @HarshPatel-iy5qe 9 місяців тому

      It used to be a LLM, but obviously now in the gen of trillions parameters model we can't say millions parameters model a LLM, but earlier it was a LLM , after few years these llama 2 and gpt 3 can't be LLM according to future models standard, but that does not change the fact of current scenario. hence, BERT is a LLM which trained on less parameters.

  • @VishalKumar-su2yc
    @VishalKumar-su2yc 11 місяців тому +1

    it was good video

  • @dotnetHub
    @dotnetHub Рік тому

    hi bro i facing error
    I'm using hugging face dataset if sentiment analysis.
    where in the dataset contain sentiment column and data type of sentiment column is string how to convert into integer and label number 1,2,3
    in your case automatically convert into int64
    please guide me I'm stock from last 7 days
    thanks for your attention

  • @soumyaranjan7474
    @soumyaranjan7474 Рік тому

    Thanks a lot for this video. Could you write the code how to do inference through pooler_outpt?

  • @rrrila8851
    @rrrila8851 Рік тому

    Hey, I really liked your video, although I have few doubts on a few matters, I would love to have a chat with you if it were possible, so you can help me. Do you think we can have a chat over Discord or similar?

  • @negociosupq
    @negociosupq 10 місяців тому

    Great video! any clue why I got so low accuracy ?
    The Secret to 90%+ Accuracy in Text Classification
    32/32 ━━━━━━━━━━━━━━━━━━━━ 313s 10s/step - accuracy: 0.3567 - loss: 1.5853
    [1.5781687498092651, 0.3684999942779541]

    • @karthik7610
      @karthik7610 9 місяців тому

      same here
      accuracy: 0.3741 - loss: 1.5632

    • @PritishMishra
      @PritishMishra  9 місяців тому

      Hey, there's some problems with the code. Let me try to fix this.

  • @superfreiheit1
    @superfreiheit1 3 місяці тому

    I got 94% F1 with bert-base-uncased

  • @abdelrahmanmohamed9
    @abdelrahmanmohamed9 9 місяців тому

    from the last 5-6 hrs i am trying to find a step-by-step proper material on how to fine to BERT with your dataset , finally found it , thank for making this video.