Can you solve this?

Поділитися
Вставка
  • Опубліковано 9 лют 2025
  • Subscribe for more
    #maths
    #mathematics
    #olympiad

КОМЕНТАРІ • 7

  • @PradeepKumarJ-d4x
    @PradeepKumarJ-d4x 9 днів тому

    Good efforts

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 19 днів тому

    Power tower must be executed from top to the bottom.
    Let 2^x=u and 3^x=v --> 2^v=3^u
    Take log: vlog(2)=ulog(3)
    (3^x)log(2)=(2^x)log(3)
    Divide by (3^x)log(3):
    (⅔)^x=[log(2)]/log(3)
    Again take log to get x:
    x=log[{log(2)}/log(3)]/[log(2)-log(3)]

  • @chinmay_0518
    @chinmay_0518 Місяць тому

    What is the difference between
    2^2^3 and (2^2)^3

    • @2sljmath
      @2sljmath  Місяць тому +1

      2^2^3=2^8=256
      (2^2)^3=4^3=64
      Or
      (2^2)^3=2^(2*3)=2^6=64
      🙏

  • @srinivasch-re2oq
    @srinivasch-re2oq 23 дні тому

    Apply logerthms.

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 19 днів тому

    Power tower must be executed from top to the bottom.
    Let 2^x=u and 3^x=v --> 2^v=3^u
    Take log: vlog(2)=ulog(3)
    (3^x)log(2)=(2^x)log(3)
    Divide by (3^x)log(3):
    (⅔)^x=[log(2)]/log(3)
    Again take log to get x:
    x=log[{log(2)}/log(3)]/[log(2)-log(3)]