Una superficie orientable puede definirse simplemente como una variedad orientable de dimensión dos, donde toda curva cerrada simple contenida tiene una vecindad regular homeomorfa a un cilindro abierto. Cualquier variedad de dimensión dos que no es orientable es una superficie no-orientable.
Una superficie orientable puede definirse simplemente como una variedad orientable de dimensión dos, donde toda curva cerrada simple contenida tiene una vecindad regular homeomorfa a un cilindro abierto. Cualquier variedad de dimensión dos que no es orientable es una superficie no-orientable.