Can you Solve Oxford University Entrance Aptitude test ?

Поділитися
Вставка
  • Опубліковано 30 жов 2024

КОМЕНТАРІ • 30

  • @ChristopherPalmer-g3n
    @ChristopherPalmer-g3n 12 днів тому +5

    This is all true but who would think of that method? Obvious approach is to solve for b:
    2b=(44-a^2)/(a+1/2)
    Then split into partial fractions.
    2b=-a + 1/2 + 175/(a+1/2)
    This describes a hyperbola which crosses the a axis at √44 so there are just 6 integer cases to try, and the two correct ones turn up immediately

  • @paulortega5317
    @paulortega5317 12 днів тому +2

    Good problem. You can represent as u² - v² = 175 where u = ± 2(a+b) and v = ± (2b-1)
    If the two factors are α & β, αβ = 175, then examine u = (α + β)/2 and v = (α - β)/2; u and v must be even and odd respectively; a & b must be > 0
    This narrows down to 5•35 and 7•25; (a,b) = (2,8), (3,5)
    I think the full set of integer solutions is (a,b) = (0,44),(-1,-43),(2,8),(-18,8),(17,-7),(-3,-7),(12,-4),(-4,-4),(3,5),(-13,5)

  • @vegimike
    @vegimike 11 днів тому +1

    Way quicker to rearrange to a^2 = 44 - 2ab - b noting that RHS < 44, solving for b with a =1, 2, 3, 4, 5, 6, and taking the integer solutions.

  • @user-hy6sp7qe9k
    @user-hy6sp7qe9k 12 днів тому +1

    As a>=1, the original equality implies that b < 44/3, i.e., b

    • @superacademy247
      @superacademy247  12 днів тому +1

      Excellent solution, I like how you tested all the possible values of b! 💯🙏Thanks for the detailed explanation, I appreciate the step-by-step breakdown! 👍

  • @luizfabio3675
    @luizfabio3675 11 днів тому +2

    You can consider the expression as a second degree equation in 'a' and find the roots in function of 'b'! That is, a = -b ± (b²-b+44)½

    • @superacademy247
      @superacademy247  11 днів тому

      That's a great approach to solving this equation! 💯😊Nice work! You're thinking strategically! 👍😎

  • @sh1949again
    @sh1949again 11 днів тому +2

    This is a logic test. Both positive integers, a

    • @superacademy247
      @superacademy247  11 днів тому

      That's a great way to approach this problem! 😊 Thanks for sharing your approach! 🔥

  • @shantvatavaran
    @shantvatavaran 6 днів тому

    a = -4
    b = -4
    (-4)^2 +2(-4)(-4) + (-4) = 16+32-4 = 44

  • @dan-florinchereches4892
    @dan-florinchereches4892 12 днів тому +2

    let's take the edge cases off the list:
    a=0 =>b=44
    Otherwise
    b=(44-a^2)/(2a+1)=(-a^2-a/2+a/2+1/4-1/4+44)/(2a+1)=-a/2+1/4+175/(8a+4)=(1-2a)/4+175/(8a+4)=(1-2a)/4+(7*25)/(8a+4)
    We need at least 2a+1 to divide 7*25 but also the fractions to add to a whole
    2a+1 belongs to set{-175;-35;-25;-7;-5;-1;1;5;7;25;35;175}
    => a belongs to {-88;-18;-13;-4;-3;-1;0;2;3;12;17;87}
    Values of b corresponding to a from set:
    {44+1/4-1/4; 1/4+9-5/4; 27/4-7/4; 9/4-25/4;7/4-35/4;3/4-175/4;1/4+175/4;-3/4+35/4; -5/4+25/4;-23/4+7/4;-33/4+5/4;-173/4+1/4}
    B belongs to {44,8,5,-4;-7;-43;44;8;5;-4;-7;-43}
    => (a,b)€ { (-88,44),(-18,8),(-13,5),(-4,-4),(-3,-7),(-1,-43),(0,44),(2,8),(3,5),)(12,-4),(17,-7),(87,-43)}

    • @superacademy247
      @superacademy247  12 днів тому

      Awesome producing all integer solutions 🙏🤩🤩🙏👏

    • @dan-florinchereches4892
      @dan-florinchereches4892 12 днів тому

      I see I could have got to your form by multiplying by 4 and moving the first fraction to one side then multiplying by denominator.
      So your method works too if you can accept that 2a+4b-1 can be larger than 2a+1 and the factors may be negative
      I also gave a fleeting thought to using quadratic formula, but here might be a good place for it:
      A1,2=(2b+-√(4b^2-4(b-44))/2=b+-√(b^2-b+44) this is not particularly helpful because the discriminant is always >0 and we get no good limitations for the number of values to check

  • @ARABGULF4444
    @ARABGULF4444 12 днів тому +1

    There is infinite number of solutions. Aa an example, try plug x=2, you get y=8.

    • @superacademy247
      @superacademy247  12 днів тому

      Great observation! It's a good idea to check for different solutions. 😊

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 12 днів тому

    (20)+2ab+(22)=(10^10)+2ab+(11^11) (5^5^5^5)+2ab×(5^6^5^6) (1^1^1^1)+2ab+(1^3^2^1^3^2) 1ab+(1^13^2) (3^2) (ab ➖ 3ab+2).

  • @jojojo7333
    @jojojo7333 11 днів тому +1

    Not sure it deserves lot of analysis. We look for Z+ solutions so what if a=1? b= 43/3 ( 30s), a=2? b= 40/5=8. 2;8 is solution, next a=3? b = 35/7. 3,5 is solution ( 1min30s). a=4? b=28/9, next. a=5? b=19/11, next. a=6? b=8/13. next. it ends here as long as 7 will produce negative b. takes 3 minutes. So I found 2;8 and 3;5 for a;b.

  • @saniya5187
    @saniya5187 11 днів тому

    Can you solve, for positive n integer if f(x)= cos(x).cos(2x).cos(3x)......cos(nx)
    And |f″(x)|>2023. Find smallest possible value of n.

  • @rickyahmadruslan1766
    @rickyahmadruslan1766 12 днів тому

    x = k
    y = (44 - k²)/(2k + 1)
    k € R
    k is not equal (- 1/2)

  • @Sujay.Sudhir
    @Sujay.Sudhir 12 днів тому

    I got a=-4 and b=-4 as I took b-44=b^2. I am not confident with the accuracy of my method.

    • @Sujay.Sudhir
      @Sujay.Sudhir 12 днів тому

      Then I used (a+b)^2 identity which equals zero after we take 44 to LHS.

    • @Sujay.Sudhir
      @Sujay.Sudhir 12 днів тому

      And solved it as a quadratic equation.

    • @superacademy247
      @superacademy247  12 днів тому

      You're welcome to show your full workings so that I can check on your accuracy

  • @irenehartlmayr8369
    @irenehartlmayr8369 12 днів тому

    B=/P !!!

    • @superacademy247
      @superacademy247  12 днів тому

      Irene, good evening. I'm on the process of learning correct pronunciation. Thanks for your concern and support 💕😍🤩👏🙏

  • @friedrichmathiak206
    @friedrichmathiak206 12 днів тому

    Dieses Ratespiel hat nichts mit Mathematik zu tun!

    • @superacademy247
      @superacademy247  12 днів тому

      It's not guess work but arithmetic principles✅

  • @xroonos3151
    @xroonos3151 11 днів тому

    Это не математика. Если в Оксфорде это вот считают математикой, то понятно, почему в Англии исчезла вся промышленность и территория превратилась в музей, где за любой чих взимают плату.