Розмір відео: 1280 X 720853 X 480640 X 360
Показувати елементи керування програвачем
Автоматичне відтворення
Автоповтор
Take the conjugate as sqrt5 + sqrt 3 - sqrt8 to get 2*sqrt 15 in denominator which cancels with 30 to give sqrt 15 in numerator to be multiplied with the conjugate to give answer in fewer steps
Thanks for sharing your alternative approach! 🔥🔥🔥I’m glad you found a more efficient way to solve the problem! 💯🙏
Input30/(sqrt(8) + sqrt(5) + sqrt(3)) = 5 sqrt(3) + 3 sqrt(5) - 2 sqrt(30)=5Sqrt[3]+3Sqrt[5]-2Sqrt[30]ResultTrueLogarithmic formlog(2 sqrt(2) + sqrt(3) + sqrt(5), 30) - log(2 sqrt(2) + sqrt(3) + sqrt(5), sqrt(8) + sqrt(5) + sqrt(3)) = log(2 sqrt(2) + sqrt(3) + sqrt(5), 5 sqrt(3) + 3 sqrt(5) - 2 sqrt(30))
Nice!
Thanks for watching! 🙏😊I’m glad you found it interesting! 💯💖
5 digits against 7 but simplified 🙂
3^10/2^3+2^3+3 1^2^5/1^1^1+2^1+3 1^1/2^1+3 1/2^1+3 /2+3 (x ➖ 3x+2) .
7,5 my answer
I certainly hope that this kind of pointless exercise isn't really something Oxford University is using on their entrance exams.
Take the conjugate as sqrt5 + sqrt 3 - sqrt8 to get 2*sqrt 15 in denominator which cancels with 30 to give sqrt 15 in numerator to be multiplied with the conjugate to give answer in fewer steps
Thanks for sharing your alternative approach! 🔥🔥🔥I’m glad you found a more efficient way to solve the problem! 💯🙏
Input
30/(sqrt(8) + sqrt(5) + sqrt(3)) = 5 sqrt(3) + 3 sqrt(5) - 2 sqrt(30)=5Sqrt[3]+3Sqrt[5]-2Sqrt[30]
Result
True
Logarithmic form
log(2 sqrt(2) + sqrt(3) + sqrt(5), 30) - log(2 sqrt(2) + sqrt(3) + sqrt(5), sqrt(8) + sqrt(5) + sqrt(3)) = log(2 sqrt(2) + sqrt(3) + sqrt(5), 5 sqrt(3) + 3 sqrt(5) - 2 sqrt(30))
Nice!
Thanks for watching! 🙏😊I’m glad you found it interesting! 💯💖
5 digits against 7 but simplified 🙂
3^10/2^3+2^3+3 1^2^5/1^1^1+2^1+3 1^1/2^1+3 1/2^1+3 /2+3 (x ➖ 3x+2) .
7,5 my answer
I certainly hope that this kind of pointless exercise isn't really something Oxford University is using on their entrance exams.