Tetration equation

Поділитися
Вставка
  • Опубліковано 2 січ 2025

КОМЕНТАРІ • 78

  • @REHAN._.450
    @REHAN._.450 Рік тому +45

    That smile will attract anyone

  • @l.w.paradis2108
    @l.w.paradis2108 7 місяців тому +5

    Best math teacher on UA-cam. 💯

  • @The_Soul_King
    @The_Soul_King Рік тому +19

    Your way of learning is amazing. You explain everything clearly, and you're always smiling, I would love to have you as my prof
    I'm only in the equivalent of high school but I understand (almost) everything !

  • @arthurvinicius2523
    @arthurvinicius2523 Рік тому +2

    Man, your voice is just so relaxing, it's just like ASMR and how u explain, th enthusiasm, anyone really enjoy and learn in a math class this way

  • @akshajgorugantu666
    @akshajgorugantu666 Рік тому +13

    Awesome video, i've become a fan of yours now, you're teaching is very addicting and awesome Sir❤

  • @tjat55
    @tjat55 9 місяців тому

    your videos are anti-stress,
    I became a fan.

  • @utkarshpathak3472
    @utkarshpathak3472 Рік тому +4

    bro really love your videos.... I mean really now I'm doing flax in my college by telling everyone about tetration🤣🤣🤣🤣

  • @twinkletoes1588
    @twinkletoes1588 Рік тому +1

    Maaan you are awesome!! Love from Russia❤

  • @johnfox9169
    @johnfox9169 Рік тому

    Wonderfully motivated explanations. You are the man!!

  • @Majan-v8K
    @Majan-v8K Рік тому

    You are gpod, I like your presentations and explanations.
    Ypou make it in such an
    easy way zhat any pne can inderstand.Thats teachinh.

  • @tatecrossette2855
    @tatecrossette2855 Рік тому +3

    Your handwriting is gorgeous

    • @PrimeNewtons
      @PrimeNewtons  Рік тому +1

      Thank you so much 😀

    • @tatecrossette2855
      @tatecrossette2855 Рік тому +1

      @@PrimeNewtons I've showed tetration to my math teacher. She has never heard of it. Math theory and just big math I think is the most fun thing to learn about. Thank you!

  • @theking2000
    @theking2000 Рік тому

    Nice and refreshing video .. great job

  • @adw1z
    @adw1z Рік тому +2

    Excellent! I love ur videos so much, thank you

  • @KevinJB1966
    @KevinJB1966 Рік тому +8

    Loving your videos. Your teaching style is unique, and very enjoyable. I hope that your clue about "many arrows" is going to be a Graham's Number video. I've yet to see one that I fully understood but I think if anyone can make it clear, it will be you! I also wanted to ask: you showed that 0 and 1 are solutions to 3^^x=3^x but is there an algebraic solution to this type of question? e.g. can we solve something like 2^^x=9^x?

    • @PrimeNewtons
      @PrimeNewtons  Рік тому +3

      Thank you. I tried an algebraic solution but it was not helpful. Looking for a better way. I would consider superlogarithm and super roots. I hope I can.

    • @aguyontheinternet8436
      @aguyontheinternet8436 Рік тому +4

      well for that example, yes. x=0 is a solution, and if you graph it, I suspect there's a second value in-between -1 and 0 (something like x~-0.843), and a third between 3 and 4 (something like x~3.62), but these would require a proper definition for tetration of real numbers to properly represent.

  • @jirisykora9926
    @jirisykora9926 Рік тому +1

    Gorgeous! Keep it up! Soon you'll have like milion subscribers :D

  • @mr.mxyzptlks8391
    @mr.mxyzptlks8391 4 місяці тому

    I appreciate the content. Love your calligraphy 🤩What chalk are you using? Now, having ventured into power towers, is there an equivalent into logarithms? I am curious, because all this extends beyond my CS MS classes, long ago…

  • @BartBuzz
    @BartBuzz 11 місяців тому +3

    One question you didn't answer is "What is the practical use of tetration?" I would have imagined that 3††4 is a very large number. But my calculator says that 3††4 is not a number.

  • @mvpAXEL
    @mvpAXEL Рік тому

    very very generous ❤ love learning 💜

  • @OlakokaJoseph
    @OlakokaJoseph 11 місяців тому

    Credible 🎉🎉🎉

  • @surendrakverma555
    @surendrakverma555 10 місяців тому

    Very good 👍

  • @aguyontheinternet8436
    @aguyontheinternet8436 Рік тому +2

    Before watching, is tetration even... properly defined for non-integer values? I remember a video from SoME that went quite in depth about it, I'll have to rewatch it, but til then, I know x=0 and x=1 are two solutions to this. as n↑0=1 and n↑↑0=1, similarly n↑1=n and n↑↑1=n. Perhaps there are other solutions that come up when you properly define tetration in the reals.
    4:36 nice fix lol

    • @ryanman0083
      @ryanman0083 Рік тому +1

      Yes it is. For a^x = a^^x
      0 ≤ x ≤ 1
      We can better understand using super Logarithm (inverse of Tetration)
      By definition sLog2 (2^^3) = 3
      NOTE: "sLog" is a notation for super Logarithm. Like how Logarithm cancels the base leaving the exponent ex. Log2 (2^3)=3 super Logarithm does the same with Tetration.
      We can use super Logarithm to solve non integer super powers since super Logarithm is repeated Logarithm by definition until the result is less than 1
      Let's let sLog2 (16) = 3+x
      Where 0 ≤ x < 1 (represents a decimal)
      sLog2 (2^^3) = sLog2 (2^2^2) => Log2(2^2^2) = 2^2
      => Log2(2^2) = 2
      =>Log2(2) = 1
      At this point we've taken three logs representing our integer part of the solution (given by the fact that the answer is equal to 1). We just take log again for the decimal x to see what happens to the remainder of 2's that we need.
      Log2 (1) = 0
      Thus sLog2 (16) = 3+0 = 3
      Well look what happens when we go backwards through the same process
      Log2 (Log2 (Log2 (Log2 (16)))) = 0
      Log2 (Log2 (Log2 (16))) = 2^0
      Log2 (Log2 (16)) = 2^2^0
      Log2 (16) = 2^2^2^0
      16 = 2^2^2^2^0 = 2^2^2 = 2^^(3+0)
      The remainder adds an extra '2' to the top of the power tower and the additional 2 is raised to the power of the remainder
      For 0 ≤ x ≤1
      By definition sLog a(a^^3+x) => a^a^a^a^x
      By definition of Tetration a^^3+x = a^a^^2+x = a^a^a^^1+x = a^a^a^a^^x
      a^a^a^a^^x = a^a^a^a^x
      a^a^a^^x = a^a^a^x
      a^a^^x = a^a^x
      a^^x = a^x by definition
      For example take
      sLog2 (20) = 3+x
      Log2 (Log2 (Log2 (Log2 (20)))) = 0.1088761602
      Log2 (Log2 (Log2 (20))) = 2^0.1088761602
      Log2 (Log2 (20)) = 2^2^ 0.1088761602
      Log2 (20) = 2^2^2^0.1088761602
      20 = 2^2^2^2^0.1088761602 = 2^^3.1088761602
      So sLog2 (20) = 3.1088761602 meaning 2^^3.1088761602 = 20

    • @aguyontheinternet8436
      @aguyontheinternet8436 Рік тому

      @@ryanman0083 :O

  • @khemmath
    @khemmath 4 місяці тому

    Nice ❤

  • @abc4828
    @abc4828 Рік тому

    Are there counter-operations like roots and logarithms are to exponentiation?

  • @GSUPRIYODas
    @GSUPRIYODas Рік тому

    U need 10 billion subs

  • @Lohikaarme1984
    @Lohikaarme1984 Рік тому +1

    Looking forward for more arrows!! :D

  • @elver_galinda321
    @elver_galinda321 Рік тому

    Amaizing video, scared for pentation!

  • @enambhuiyan2733
    @enambhuiyan2733 Рік тому +5

    Doing fun at the same time doing math.❤

  • @militantpacifist4087
    @militantpacifist4087 Рік тому +4

    Can you please do super roots? Thank you. 👍

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs Місяць тому +1

    It’s in my head.

  • @satanicexistentialist6631
    @satanicexistentialist6631 Рік тому +1

    Would a tetration of -1 be equal to exponent of -1 as well?

    • @ryanman0083
      @ryanman0083 Рік тому

      a^^(-1) = 0 by definition
      a^^1 = a
      a^^0 = Log a(a) = 1
      a^^(-1) = Log a(1) = 0

  • @anubhavsingh5533
    @anubhavsingh5533 Рік тому

    oooo man make more vedios i love them

  • @ziroplay2100
    @ziroplay2100 Рік тому

    Love this moment❤🙃

  • @AvrajitGRoy
    @AvrajitGRoy Рік тому +1

    loved it

  • @LilDP
    @LilDP Рік тому +1

    Like the reading rainbow of Math.

  • @DreamerTheWolfFox
    @DreamerTheWolfFox Рік тому +1

    i feel like including x{2}y (brace notation) and {x,y,2} (array notation) couldve been other good ways to show how tetration was written. I personally really like brace notation for when the arrows get to be a lot, and i like array notation a lot.

  • @dranandamay
    @dranandamay Рік тому

    Can we start by taking ln of both sides?

  • @ShubhamYadav-o6d2f
    @ShubhamYadav-o6d2f Рік тому +1

    Make a video on tree of 3 this video was Also nice

  • @bill-nn1vp
    @bill-nn1vp 8 місяців тому

    3 tetrated to x = 3 to the power of itself x times...
    so what is 3 pentated to x..?
    how would you write that?

  • @electro_
    @electro_ Рік тому

    чел у тебя дар, как тебя приятно слушать

  • @Gnome7495
    @Gnome7495 Рік тому

    Nice video

  • @tristanmike
    @tristanmike Рік тому

    Damn it, got me on the first question. I saw the formula and the first question and said to myself with full confidence, "NO" and the very moment he started saying what the two answers were, I realized what an idiot I am. I should have known better, lol.

  • @tristanmike
    @tristanmike Рік тому

    Are you using Japanese chalk by chance ?

  • @mathiaslist6705
    @mathiaslist6705 Рік тому

    And I'd one and zero will give you always a solution for any natural base. The interesting thing are bases between e^(1/e) and 2 --- probably even between e^(1/e) and e where you get a solution which is not just 0 and 1.

  • @nurudeennajeem6605
    @nurudeennajeem6605 15 днів тому

    Great

  • @JSSTyger
    @JSSTyger Рік тому

    Now we're playing with power, SUPER POWER.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs Місяць тому +1

    0
    3=3^0=1 X=0 X=1 1
    3=3^1

  • @SERIRUS-c8h
    @SERIRUS-c8h 7 місяців тому

    Thank You!

  • @Harshavardhantej9000
    @Harshavardhantej9000 Рік тому

    ❤❤❤❤❤❤❤❤❤❤🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉😊😊😊😊😊😊😊😊 0:35

  • @truthministries6880
    @truthministries6880 Рік тому

    so clear

  • @tamilselvanrascal5956
    @tamilselvanrascal5956 Рік тому

    🎉🎉🎉

  • @ReinaldoGarcíaGarcía-p5h
    @ReinaldoGarcíaGarcía-p5h Рік тому

    I saw the magic zero vanshing from left and appearing to the right... Math is magic 😂

  • @georgepaidas1132
    @georgepaidas1132 Рік тому

    Excellent 👍👍👍. Very cooooooool or better Very C(O^^15)L 😅😅😅😅

  • @vashon100
    @vashon100 Рік тому

    More power! Uh Uh Uh! Tim the toolman would be happy.

  • @justafanofalphabetlore
    @justafanofalphabetlore Рік тому

    There’s complex roots of this equation.

  • @ToanPham-wr7xe
    @ToanPham-wr7xe Рік тому

    😮

  • @someweirdstuff1256
    @someweirdstuff1256 Рік тому

    negative tetration powers: time to cause trouble 😂😂😂

  • @nicolascamargo8339
    @nicolascamargo8339 Рік тому

    Wow

  • @WilliamWizer
    @WilliamWizer Рік тому

    while it's evident that 0 and 1 are answers to the equation, I see no proof that there's no other solutions. only a good explanation of tetration.
    by the way, there's still another way to write tetration. using conway chain arrow. instead of 3↑↑4 you can use 3→4→2
    I prefer this method because, for example, instead of 3↑↑↑↑↑↑↑↑↑4 you can use 3→4→9 (a bit more easy to read even if nobody in his right mind would try to compute it)

  • @yuriandropov9462
    @yuriandropov9462 Рік тому

    If x is a real ,does a^x equal to a.a.a......( x-(times))

  • @RicoTonetti
    @RicoTonetti Рік тому +2

    Deze guy is net zo charismatisch als math with menno😂

  • @jakeworral2428
    @jakeworral2428 Рік тому

    will smith's long lost brother

  • @ryanman0083
    @ryanman0083 Рік тому +2

    The equation 3^^x = 3^x actually has infinite solutions
    We can understand better with super Logarithm (inverse of Tetration)
    By definition sLog2 (2^^3) = 3
    NOTE: "sLog" is a notation for super Logarithm. Like how Logarithm cancels the base leaving the exponent ex. Log2 (2^3) = 3 super Logarithm does the same with Tetration leaving the super power.
    We can use super Logarithm to solve non integer super powers since super Logarithm is repeated Logarithm by definition.
    Let's let sLog2 (16) = 3+x
    Where 0 ≤ x < 1 (represents a decimal)
    sLog2 (2^^3) = sLog2 (2^2^2) => Log2(2^2^2) = 2^2
    => Log2(2^2) = 2
    =>Log2(2) = 1
    At this point we've taken three logs representing our integer part of the solution (given by the fact that the answer is equal to 1). We just take log again for the decimal x (the remainder of 2's that we need.)
    Log2 (1) = 0
    Thus sLog2 (16) = 3+0 = 3
    Well let's look at what happens when we go backwards through the same process to see what happens to the remainder.
    Log2 (Log2 (Log2 (Log2 (16)))) = 0
    Log2 (Log2 (Log2 (16))) = 2^0
    Log2 (Log2 (16)) = 2^2^0
    Log2 (16) = 2^2^2^0
    16 = 2^2^2^2^0 = 2^2^2 = 2^^(3+0)
    The remainder adds an extra '2' to the top of the power tower and the additional 2 is raised to the power of the remainder
    For 0 ≤ x ≤ 1
    By definition sLog a(a^^3+x) => a^a^a^a^x
    By definition of Tetration a^^3+x = a^a^^2+x = a^a^a^^1+x = a^a^a^a^^x
    a^a^a^a^^x = a^a^a^a^x
    a^a^a^^x = a^a^a^x
    a^a^^x = a^a^x
    a^^x = a^x by definition for 0 ≤ x ≤ 1

    • @valentinmontero3957
      @valentinmontero3957 Рік тому

      A si como existe el supermercado logaritmo existiría la superficie raíz
      Slog base 2 de 16=3 por que 2^^3=16.
      Sraiz de indice 2 de 27=3 por que 3^^2=27

  • @user_math2023
    @user_math2023 Рік тому

    Titration

  • @ilafya
    @ilafya Місяць тому

    The solution is x=1

  • @Manishkoti0
    @Manishkoti0 9 місяців тому

    X=1

  • @justafanofalphabetlore
    @justafanofalphabetlore 10 місяців тому

    Tetration needs an interpolation 😢

  • @soumyadeepbaidya8191
    @soumyadeepbaidya8191 11 місяців тому

    I thought you gonna solve x

  • @althereq3656
    @althereq3656 Рік тому

    ¹3=3¹
    Easy

  • @ToanPham-wr7xe
    @ToanPham-wr7xe Рік тому

    😮