Thailand | A Nice Algebra Problem | Math Olympiad

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ • 20

  • @dominiquelarchey-wendling5829
    @dominiquelarchey-wendling5829 14 днів тому +2

    Simple. -3 is an obvious root.

  • @negativeM
    @negativeM 24 дні тому +1

    That part where m^2 = -10. I actually solved for this using the quadratic formula to get -5+-isqrt(10) and tried to plug in -5+isqrt(10) into the x values to solve for it but it didn't work. And like that you rejected it right off the spot. It was fun to verify it anyways. Nice stuff!

    • @SALogics
      @SALogics  23 дні тому +1

      Thanks for liking! ❤

  • @walterwen2975
    @walterwen2975 День тому

    Thailand, Math Olympiad: (x + 6)⁴ + (x + 4)⁴ = 82; x =?
    First method:
    82 > (x + 6)⁴ > (x + 4)⁴ > 0; 0 > x > - 6 or 82 > (x + 4)⁴ > (x + 6)⁴ > 0; - 6 > x > - 8
    (x + 6)⁴ + (x + 4)⁴ = 81 + 1 = 3⁴ + 1⁴ = (- 3 + 6)⁴ + (- 3 + 4)⁴; x = - 3
    (x + 6)⁴ + (x + 4)⁴ = 1 + 81 = 1⁴ + 3⁴ = (- 7 + 6)⁴ + (- 7 + 4)⁴; x = - 7
    Missing two complex value roots
    Second method:
    Solve the equation directly to find the two complex value roots
    Let: y = x + 5; (x + 6)⁴ + (x + 4)⁴ = (y + 1)⁴ + (y - 1)⁴ = 82
    (y ± 1)⁴ = y⁴ ± 4y³ + 6y² ± 4y + 1, (y + 1)⁴ + (y - 1)⁴ = 2(y⁴ + 6y² + 1) = 82
    y⁴ + 6y² + 1 = 41, y⁴ + 6y² - 40 = (y² - 4)(y² + 10) = 0, y² - 4 = 0 or y² + 10 = 0
    y² = 4, y = ± 2 = x + 5, x = - 3 or x = - 7; y² = - 10, y = ± i√10, x = - 5 ± i√10
    Answer check:
    x = - 3 or x = - 7: (x + 6)⁴ + (x + 4)⁴ = 82; Confirmed as shown in First method
    x = - 5 ± i√10, x + 5 = ± i√10 = y: (x + 6)⁴ + (x + 4)⁴ = 2(y⁴ + 6y² + 1)
    2(y⁴ + 6y² + 1) = 2[(± i√10)⁴ + 6(± i√10)² + 1] = 2(100 - 60 + 1) = 82; Confirmed
    Final answer:
    x = - 3; x = - 7; Two complex value roots, if acceptable;
    x = - 5 + i√10 or x = - 5 - 5i√10

  • @YuriyRusinov
    @YuriyRusinov 25 днів тому +1

    Why you don't search complex roots of this equation?

    • @SALogics
      @SALogics  24 дні тому +1

      Then the video will be very lengthy ❤

  • @giuseppesantoro4572
    @giuseppesantoro4572 12 годин тому

    (x+6)^4+(x+4)^4=3^4+1^4.....ecc ecc facciamolo facile

  • @cabasantbab
    @cabasantbab 25 днів тому +1

    -3

    • @SALogics
      @SALogics  24 дні тому +1

      Is there a real solution besides -3 and -7? ❤

    • @SALogics
      @SALogics  24 дні тому +1

      Oh, I understand, Thanks a lot! ❤

  • @佐藤広-q2u
    @佐藤広-q2u 25 днів тому +1

    This video is not good. If the viewers are only students who have not yet learned about imaginary and complex numbers, it is okay to reject these because they are not real solutions, but if not, the problem needs to include the condition that x is a real number.
    Another thing, m²=4 ⇒m=√4 ⇒m=±2, is incorrect. You must write m²=4 ⇒m=±√4 ⇒m=±2.

    • @SALogics
      @SALogics  24 дні тому +1

      Yes, you are right! ❤

  • @rabotaakk-nw9nm
    @rabotaakk-nw9nm 24 дні тому +1

    x+4=y => (y+2)⁴+y⁴=82 =>
    => y⁴+4y³+12y²+16y-33=0 =>
    => (y-1)(y³+5y²+17y+33)=0 =>
    => (y-1)(y+3)(y²+2y+11)=0 =>
    => y1=1; y2=-3; y3,4=-1±ivʼ10 =>
    => x1=-3; x2=-7; x3,4=-5±ivʼ10 😁

    • @rabotaakk-nw9nm
      @rabotaakk-nw9nm 24 дні тому +1

      y⁴+4y³+12y²+16y-33=0
      y=±1,±3,±11,±33
      y=1; 1⁴+4•1³+12•1²+16•1-33=0
      1 4 12 16 - 33
      0 1 5 17 33
      1 5 17 33 0
      y³+5y²+17y+33=0
      y=±1,±3,±11,±33
      y=-3; (-3)³+5(-3)²+17(-3)+33=0
      1 5 17 33
      0 -3 - 6 -33
      1 2 11 0
      y²+2y+11=0
      y=-1±vʼ(1²-11)=-1±ivʼ10

    • @rabotaakk-nw9nm
      @rabotaakk-nw9nm 24 дні тому +1

      y⁴+4y³+12y²+16y-33=0
      y=±1,±3,±11,±33
      y=1; 1⁴+4•1³+12•1²+16•1-33=0
      1. 4 12 16 -33
      0. 1 5 17 33
      1 5 17 33 0
      y³+5y²+17y+33=0
      y=±1,±3,±11,±33
      y=-3; (-3)³+5(-3)²+17(-3)+33=0
      1 5 17 33
      0 -3 -6 -33
      1 2 11 0
      y²+2y+11=0
      y=-1±vʼ(1²-11)=-1±ivʼ10

    • @SALogics
      @SALogics  23 дні тому +2

      Very nice! ❤

    • @SALogics
      @SALogics  23 дні тому +2

      Very nice! ❤