How SOM (Self Organizing Maps) algorithm works

Поділитися
Вставка
  • Опубліковано 9 лис 2024

КОМЕНТАРІ • 219

  • @skylible
    @skylible 5 років тому +110

    I will have an exam in 30 minutes. I didn't understand anything about this topic. Then I watched this and holy hell I went from not understanding it at all to understand it almost fully (The formulas isn't yet though). Thank you!

    • @tkorting
      @tkorting  5 років тому +4

      Thanks for your feedback. How was the exam? :)
      Please subscribe to my channel
      Regards

    • @nimrsawafta1682
      @nimrsawafta1682 4 роки тому

      Me too bro LOL

    • @mrinalsahu7564
      @mrinalsahu7564 8 місяців тому

      me too lol

    • @skylible
      @skylible 8 місяців тому +11

      ​​@@tkorting I just saw your comment again after a long time.
      I think it went well. Already graduated. Working as a software engineer/data scientist in one of the top paid companies in my country. So all is well I guess haha.
      Thank you for this!

  • @yahyamohammed5418
    @yahyamohammed5418 3 роки тому +15

    Wow, first time I’m seeing someone explain this without using a simple formula, just common sense. GREAT JOB

    • @tkorting
      @tkorting  3 роки тому

      Thanks for the feedback, please subscribe to my channel

  • @chetanraj1950
    @chetanraj1950 5 років тому +3

    Thank You so much, after wasting one hour on another channel(didn't understand). Then I found yours, watched and understood SOM. Thank You so much.

    • @tkorting
      @tkorting  5 років тому

      Thanks for this feedback
      Please like and share the video, and subscribe to my channel
      Regards

  • @mbambokazbalwa519
    @mbambokazbalwa519 7 років тому +2

    If only I had seen this video months ago
    I would have saved myself the pain
    of going over every online publication on SOM
    For any Newbie in SOM..
    This is what you been looking for.
    Love from Afrika
    And Oh, thank you Thales Sehn Korting

    • @tkorting
      @tkorting  7 років тому

      +Mbambokaz'balwa greetings from Brazil
      thanks for your feedback
      please subscribe to my channel
      regards

    • @mbambokazbalwa519
      @mbambokazbalwa519 7 років тому

      Is there a way I can inbox you ASAP? Am working on optimising competitive learning in SOM.. Just wanna share what I have and hear what you think..

  • @mengyangchen8563
    @mengyangchen8563 9 років тому +14

    Thanks, it is the most clear and simple interpretation of SOM I had ever found

    • @tkorting
      @tkorting  9 років тому

      +Mengyang Chen thanks for your feedback.
      Please subscribe to my channel and share this video with your peers.
      Regards

  • @Kosxd
    @Kosxd 3 роки тому +4

    Lol this is very informative, ty. I read a tons of articles and didn't understand it very well, but now I feel myself much better

  • @KingAstroJack
    @KingAstroJack 9 років тому +1

    Thank you!! In less than 5 minutes, you described what my professor wasn't able to do in 2 weeks.

    • @tkorting
      @tkorting  9 років тому

      thanks Jack for your valuable comments
      please subscribe to my channel and share this video with your peers
      regards

  • @imme2763
    @imme2763 5 років тому +2

    Very good visual representation of how SOM's work, thank you sir

    • @tkorting
      @tkorting  5 років тому

      Thanks for your comment,
      please like/share/subscribe.
      Regards

  • @thejewelledparrot2818
    @thejewelledparrot2818 4 роки тому +5

    Thank you SO MUCH for this. I didn't get it at all, and this is such a simple and effective explanation.

    • @tkorting
      @tkorting  4 роки тому

      Thanks for this comment
      Please subscribe to my channel
      Regards

  • @cherylto5898
    @cherylto5898 5 років тому +2

    I know this is a simple explanation - I'm a visual learning - I think in pictures and images - this is super helpful :) Thanks!

    • @tkorting
      @tkorting  5 років тому

      I agree with you. Thanks for this feedback.
      Please subscribe to my channel.
      Regards

  • @ibrexg
    @ibrexg 8 років тому +1

    I like your way to simplify topics with simple examples :).

    • @tkorting
      @tkorting  8 років тому

      +Ibraheem Al-Dhamari thanks for your valuable comments.
      Please subscribe to my channel and share this video with your peers.
      Regards

    • @ibrexg
      @ibrexg 8 років тому

      +Thales Sehn Körting You are welcome. Sure, already did. Would be nice if you add more videos about some important topics e.g. BSplines interpolation, Active Shape Models and Deep Learning.

  • @martinh9099
    @martinh9099 5 місяців тому +1

    Simple explanation...looks very similar to a particle swarm!

  • @farshad1977
    @farshad1977 8 років тому

    you simplified SOM in a very clear way, thanks

    • @tkorting
      @tkorting  8 років тому

      thanks for your feedback
      Please subscribe to my channel and share this video with your peers.
      Regards

  • @AI-for-Science-and-Art
    @AI-for-Science-and-Art 3 роки тому +1

    Thanks! Your explanation is clear and simply!

    • @tkorting
      @tkorting  3 роки тому

      Thanks for the feedback, please subscribe to my channel

  • @dheerajkura5914
    @dheerajkura5914 7 років тому +1

    Very Nice Explanation ...! can you include how neurons are Selected/ Calculated

    • @tkorting
      @tkorting  7 років тому

      thanks for your feedback
      please like/share the video and Subscribe!
      Neurons are selected by the competitive method (2:23) and them they are updated to stay more similar to the patterns.
      In www.researchgate.net/publication/220785373_A_Geographical_Approach_to_Self-Organizing_Maps_Algorithm_Applied_to_Image_Segmentation you can find how the neurons are updated.
      Regards

  • @jaichbinachtzehn1
    @jaichbinachtzehn1 4 роки тому

    Thank you, this visualization made some parts more clearer which other sources just didn't make clear

  • @polyroguegames5820
    @polyroguegames5820 5 років тому +2

    Really helpful for understanding the fundamental concept. Thanks.

    • @tkorting
      @tkorting  5 років тому

      Thanks for your comment.
      Please like/share/subscribe.
      Regards

  • @mustafaatahannuhoglu458
    @mustafaatahannuhoglu458 7 років тому

    In order to classify discrete groups correctly you need to break the neighbourhood link otherwise they are all going to be in the same cluster since both neurons are connected. Search for 'A novel self-organizing map (SOM)'

    • @waynebutane1338
      @waynebutane1338 5 років тому

      The learning rate and the neighbourhood radius are modified as the algorithm continues, therefor with each iteration the effect on other neurons will become less.

  • @feraudyh
    @feraudyh 7 років тому +2

    Goodness, you made it sound like a very simple idea....
    A good introduction, thankyou.

    • @tkorting
      @tkorting  7 років тому

      thanks a lot for this positive feedback
      please like/share the video and subscribe
      regards

  • @paulburger9904
    @paulburger9904 5 років тому +1

    Great explanation. This makes so much more sense in 2 dimensions. Thanks!

    • @tkorting
      @tkorting  5 років тому

      Thanks for your feedback
      Please like and share the video and subscribe to my channel.
      Regards

  • @glaswasser
    @glaswasser 4 роки тому

    Your voice sounds a bit nervous but this really helped me understand the matter, thank you!

    • @tkorting
      @tkorting  3 роки тому

      Thanks for the feedback. For more nervous videos please subscribe to my channel ;)

  • @aspireac6888
    @aspireac6888 2 роки тому

    Simple explaining againest complicated task. Great

  • @PiyushChitkara
    @PiyushChitkara 7 років тому +6

    This video explains the concept so well.. Great job

    • @tkorting
      @tkorting  7 років тому

      +Piyush Chitkara thanks a lot for your positive feedback. Please like and share the video and subscribe to my channel. Regards

  • @lalala90348
    @lalala90348 7 років тому +1

    Thanks for the video. One question, I understanding was that the SOM is a unsupervised learning algorithm. Could you tell me why there are two "true neurons" with labeling?

  • @inanisv2580
    @inanisv2580 3 роки тому +1

    Thanks for your explanation, it really helps!

    • @tkorting
      @tkorting  3 роки тому

      Thanks for the feedback, please subscribe to my channel

  • @anto01able
    @anto01able 8 років тому +1

    Thank you very much! It couldn't be more clear than this!

    • @tkorting
      @tkorting  8 років тому

      thanks a lot for the feedback,
      please subscribe to my channel and like the video.
      Regards

  • @amendochka
    @amendochka 4 роки тому +3

    thank you for the informative video! does the order in which you select the inputs matter? I can imagine that the distance between the connected neurons would look different depending on the displacement of the input.

  • @tymothylim6550
    @tymothylim6550 4 роки тому

    Thank you very much! This video was very helpful for me. The graph and animations make it easy to understand too!

  • @anisbhsl
    @anisbhsl 6 років тому +1

    Thank you for the simple and clear explanation.

    • @tkorting
      @tkorting  6 років тому

      Thanks for your feedback
      Please like/share/subscribe.
      Regards

  • @valeriipotokov9094
    @valeriipotokov9094 9 років тому +2

    Very helpful algorighm. Thank you sharing this with us!

    • @tkorting
      @tkorting  9 років тому

      Valerii Potokov Hi!
      thanks for your feedback,
      please subscribe to my channel.
      Best regards

  • @arielgenesis
    @arielgenesis 6 років тому

    I have a question. During the update phase, shouldn't you update the other neuron AWAY? Because it is a competitive network?

  • @tomaszskrzypczyk7782
    @tomaszskrzypczyk7782 3 роки тому

    Why we call the clusters' centers NEURONS actually? Does it mean that a neuron is always from the same vector space as input data?

  • @ramadenlama
    @ramadenlama 10 років тому +1

    Hi, thank you very much for the explanation, it really helped. I'm just wondering about the example data set you presented at the beginning of the video. I see you have 20 unique IDs, each of which with 6 unique attributes. How is this plotted as the input distribution? What values would you use as coordinates? Thank you for your time.

    • @tkorting
      @tkorting  10 років тому +3

      Dear ramadenlama.
      Thanks for yout comments. Please share this video with your peers.
      The case with 6 attributes is different from the example, because it is simpler to show a 2 dimension case in the screen.
      For more than 2 attributes, the measures are the same, but plotting is not possible. The SOM can continue to be a 2D matrix, in order to be used as a dimension reduction scheme.
      Regards

    • @ramadenlama
      @ramadenlama 10 років тому +1

      Thales Sehn Körting Hi Thales,
      Thank you very much for your immediate reply to my question, it is greatly appreciated. I see, I guess my assumption was correct in that with 3 or more attributes multidimensional scaling must be applied. I find it strange that the literature available regarding SOMs does not directly address the nature of the input data used which is why I asked the question above.
      Again, thanks for your response.

  • @someguy760
    @someguy760 4 роки тому

    How are the *colors* of the data-points initially computed? Is each attribute (table column) assigned a color and 1 datapoint is a mixture of those colors? I've seen SOM presentations where at the beginning of the algorithm, the data-points are colored differently. Is this the reason why?

  • @epsil2511
    @epsil2511 9 років тому +12

    I finally get it, thank you!

    • @tkorting
      @tkorting  8 років тому +1

      Thanks for your feedback
      Please subscribe to my channel and share this video with your peers.
      Regards

  • @ak210596
    @ak210596 4 роки тому

    What is the difference between K-means clustering and SOM? Is it just the way the centroids are updated?

  • @hiraimran4230
    @hiraimran4230 9 років тому

    Dear SIr,
    Can u pls elaborate the importance of neighbourhood function used in SOM?

    • @tkorting
      @tkorting  9 років тому

      Dear Hira Imran,
      thanks for your feedback. Please subscribe to my channel and share this video with your peers.
      I will recommend the following article, so that you can go deep into neighborhood functions:
      www.researchgate.net/publication/220785373_A_Geographical_Approach_to_Self-Organizing_Maps_Algorithm_Applied_to_Image_Segmentation
      Best regards

    • @hiraimran4230
      @hiraimran4230 9 років тому

      Thales Sehn Körting Thanks alot Sir. ALso i want to ask the basic difference betewwn LVQ1 and SOM. It would be quite helpful as i m preparing for my exams if u could help

  • @ravedavedave
    @ravedavedave 6 місяців тому

    Nice video! Kudos from a fellow joseense

  • @musabara6269
    @musabara6269 8 років тому +1

    I got this video helpful, I want to use SOM clustering for grouping students based on their learning styles, can I get more videos to help me?

    • @tkorting
      @tkorting  8 років тому

      +Musa Bara thanks for your feedback, please subscribe to my channel and watch more videos about pattern recognition.
      SOM is good to such cases of clustering, and to analize several features projected in the 2D space of neurons.
      Regards

  • @GAJENDRASINGH-dm4rc
    @GAJENDRASINGH-dm4rc 4 роки тому

    nice explanation. i have to so a small project on SOM for my college assignment.Can you suggest me some project ideas that i can do

  • @bhartinarang2078
    @bhartinarang2078 8 років тому +4

    This is so nice & crisp.....thanks

    • @tkorting
      @tkorting  8 років тому +1

      Hi, thanks for the feedback
      please like/share and subscribe
      Regards

  • @greenctenophore
    @greenctenophore 3 роки тому +1

    Thank you! Helpful!

  • @reinvanlennep4643
    @reinvanlennep4643 4 роки тому

    How does the random selection of the input work?
    I understand that you randomly select 1 input out of the set of all inputs. However, after selecting, let's say input i, do you then remove this input from the set of possible inputs that can be selected in the next epoch?
    Or is it still possible to randomly select again input i in the next input?

  • @saanakorhonen5971
    @saanakorhonen5971 10 років тому

    Really clearly explained, G thanks!

    • @tkorting
      @tkorting  10 років тому

      Dear Saana, thanks for your valuable comments.
      Please subscribe to my channel and share this video with your peers.
      Regards

  • @bahaz.4562
    @bahaz.4562 5 років тому +1

    very simple and effective explanation. Thank u a lot for the work :D

    • @tkorting
      @tkorting  5 років тому

      Thanks for your comment,
      please like/share/subscribe.
      Regards

  • @edwardkeselman5118
    @edwardkeselman5118 8 років тому +1

    So what is the difference between using SOM and K-means? It seems that both techniques are some sort of unsupervised learning

    • @tkorting
      @tkorting  8 років тому

      thanks for your question. Please subscribe to my channel and share this video with your peers.
      You are right to think that both algorithms are very similar. In fact, if you don't use the connection between the neurons, SOM will be equal to k-means. The main difference is, then, is (example at 3:21) when you update one neuron, the other neuron is also updated with a smaller shift, but is updated.
      Regards

    • @vermes22
      @vermes22 8 років тому

      Thanks so much for the video and your explanation. Could you be so kind and tell the difference between using SOM as compared to k-means? In which cases one is more advantageous than the other?

    • @tkorting
      @tkorting  8 років тому

      thanks for your question, please subscribe to my channel.
      SOM provides more tools to understand the data, when you project your N-dimensional feature space to a 2-D, you can use the U-matrix to understand better the relations between clusters and so on. You can still use more neurons and after decide to reduce the number. Whereas in k-means you have to provide this number as the first thing for classifying. Although SOM is fast, k-means is faster.
      With some of these arguments, and depending on your dataset, you can chose the best.
      Regards

  • @skdkskdk
    @skdkskdk 8 років тому

    Haha, it cost me some points at UNI, altogether is a good explanation but some very vital grid should be shown early on, at least for my profs.

  • @haohuich
    @haohuich 8 років тому

    very well-explained and great illustration. It would be even better if you could explain Geo-SOM as well. :-)

    • @tkorting
      @tkorting  8 років тому

      thanks for your feedback, please subscribe to my channel and share this video with your peers.
      For the GeoSOM approach, I could recommend a paper in which I briefly explain the method and point to the main reference.
      www.researchgate.net/publication/220785373_A_Geographical_Approach_to_Self-Organizing_Maps_Algorithm_Applied_to_Image_Segmentation
      Regards

  • @HenriqueLuisSchmidt
    @HenriqueLuisSchmidt 9 років тому +2

    Thank you! Very helpful and simple to understand!

    • @tkorting
      @tkorting  9 років тому

      +Henrique Luis Schmidt thanks for your feedback.
      Please subscribe to my channel and share this video with your peers.
      Regards

  • @bobanas
    @bobanas 7 років тому +1

    Thanks! Very nice and clear!

    • @tkorting
      @tkorting  7 років тому +1

      +bobanas many thanks for your positive feedback. Please like and share the video. Regards

  • @jinglu3403
    @jinglu3403 8 років тому +3

    very clear.. Thanks a lot for your efforts

    • @tkorting
      @tkorting  8 років тому

      +Jing Lu thanks for your feedback.
      Please subscribe to my channel and share this video with your peers.
      Regards

  • @tatavares1985
    @tatavares1985 3 роки тому +1

    Good job

  • @joe4038720
    @joe4038720 10 років тому

    too simple and too helpful many thanks

    • @tkorting
      @tkorting  10 років тому

      Dear Kawazaki,
      thanks for your valuable comments.
      Please subscribe to my channel and share this video with your peers.
      Regards

  • @洁颖赵
    @洁颖赵 8 років тому +4

    Thank you for this wonderful explanation!!!

    • @tkorting
      @tkorting  8 років тому

      thanks for your feedback,
      please like/share the video and subscribe
      Regards

  • @ahmadjaradat3011
    @ahmadjaradat3011 2 місяці тому +1

    Thank You so much

  • @dmgeo
    @dmgeo 5 років тому +1

    Thank you so much for your explanation

    • @tkorting
      @tkorting  5 років тому

      Thanks for your feedback
      Please subscribe to my channel
      Regards

  • @FluffyVooghtje
    @FluffyVooghtje 4 роки тому +1

    Useful! Thanks a lot.

    • @tkorting
      @tkorting  3 роки тому

      Thanks for the feedback, please subscribe to my channel

  • @johnathanparker2182
    @johnathanparker2182 4 роки тому +1

    I love you. Thanks!

    • @tkorting
      @tkorting  4 роки тому

      I don't believe :)
      Subscribe to my channel

  • @lancelotdsouza4705
    @lancelotdsouza4705 2 роки тому

    Loved the video

  • @zhimoli
    @zhimoli 5 років тому +1

    Very helpful!

    • @tkorting
      @tkorting  5 років тому

      Thanks for your feedback
      Please subscribe to my channel
      Regards

  • @anasadham9508
    @anasadham9508 3 роки тому

    hello, what is the difference between k-means clustering and self organizing maps ?

    • @tkorting
      @tkorting  3 роки тому

      Thanks for the question, please subscribe to my channel
      They are different because k-means does not have connections between the clusters, and SOM has. You define the degree of connections between the clusters, or the neurons.
      Regards

  • @nathanbortman7771
    @nathanbortman7771 7 років тому +1

    U are from Brazil?
    Nice ascent.
    If yes: Muito obrigado pela explição!!
    If no: My very thanks for the explanation.

    • @tkorting
      @tkorting  7 років тому

      +Nathan Bortman Eu que agradeço ;)
      Não esqueça de se inscrever no canal e dar like no vídeo.
      Abraço

  • @mariamihaela9
    @mariamihaela9 4 роки тому +1

    very nice !

    • @tkorting
      @tkorting  3 роки тому

      Thanks for the feedback, please subscribe to my channel

  • @adityamalte476
    @adityamalte476 7 років тому +1

    I don't understand,
    this algorithm is identical to K means clustering, if so then why is it called SOM?

    • @tkorting
      @tkorting  7 років тому +1

      +aditya malte thanks for all your feedback. In fact these algorithm is similar to K means however there is an important difference between the two, because SOM connects all the Clusters, and one cluster when converting to the classe it influences the neighboring clusters, which does not happen in K means algorithm.
      Please like and share the video and subscribe to my channel.
      Regards

    • @arielgenesis
      @arielgenesis 6 років тому

      In this case, this is very similar to K means. However, because the neurons are topologically connected, it will create some interesting patterns, especially when K is large.
      For example, if we have 3 neurons, A, B and C. And neuron B is between A and C topologically, at the very end, it will also be between A and C.

    • @waynebutane1338
      @waynebutane1338 5 років тому

      @@arielgenesis In the K-means clustering algorithm you have to specify the amount of clusters you want to have whereas in SOM the neural network detects the amount itself. Also SOMs allow topology preservation (for example representing a 3d input space in a 2d space)

  • @famihra
    @famihra 11 років тому +1

    Thanks! That explain a lot for me! Thanks again!

    • @tkorting
      @tkorting  11 років тому

      Please subscribe to my channel!
      ua-cam.com/users/tkorting
      Regards

  • @aiavicii4243
    @aiavicii4243 3 роки тому

    what's the difference between SOM and K-means

  • @shivaprasadreddy1395
    @shivaprasadreddy1395 6 років тому +2

    Simple and easy
    Tq for this video

    • @tkorting
      @tkorting  6 років тому

      Thanks for your comment. Please like and share the video and subscribe to my channel.
      Regards

  • @rosasebnem
    @rosasebnem 10 років тому

    thank you for the very informative video...

    • @tkorting
      @tkorting  10 років тому

      Thanks for your feedback.
      Please share this video with your peers.
      Regards

  • @reassume4826
    @reassume4826 4 роки тому +1

    What a great explanation pace. .👍Subbed!

    • @tkorting
      @tkorting  3 роки тому

      Thanks for the feedback!

  • @sashagarmash7853
    @sashagarmash7853 5 років тому +1

    Thank you for this wonderful explanation!!! This is my diploma's theme now, btw :D

    • @tkorting
      @tkorting  5 років тому

      Thanks for your feedback.
      Please like/share/subscribe and make a good diploma's document.
      Regards

  • @lauravieira6305
    @lauravieira6305 7 років тому +3

    Muito obrigada por esse vídeo, ajudou muito!

    • @tkorting
      @tkorting  7 років тому +1

      +Laura Vieira muito obrigado pelo comentário
      não esqueça de dar like e se inscrever no canal. Abraço

  • @julit_
    @julit_ 7 років тому +1

    Ajudou bastante, obrigada!

    • @tkorting
      @tkorting  7 років тому

      +Julia Litvinoff Justus muito obrigado pelo seu comentário
      Não esqueça de dar like e compartilhar o vídeo
      inscreva-se no meu canal
      um abraço

  • @omarjaafor6646
    @omarjaafor6646 11 років тому +1

    thank you so much.

    • @tkorting
      @tkorting  11 років тому

      Thanks for sharing my video, please subscribe to my channel
      ua-cam.com/users/tkorting
      Regards

  • @mastergmatquant
    @mastergmatquant 8 років тому +12

    thanks a lot, greetings from University of Hamburg.

    • @tkorting
      @tkorting  8 років тому

      thanks for your feedback
      please subscribe and like the video
      regards

    • @schneeekind
      @schneeekind 7 років тому +5

      another thanks from university of hamburg =)

    • @tkorting
      @tkorting  7 років тому +1

      thanks!
      hi from Brazil

    • @timkilian7140
      @timkilian7140 7 років тому +5

      Another greeting from University of Hamburg. :)

    • @p0w3rFloW
      @p0w3rFloW 6 років тому +2

      and another greeting from University of Hamburg :P

  • @z3082026
    @z3082026 11 років тому +1

    thank you thank you thank you a million times! I got it now!

  • @destinyjames6117
    @destinyjames6117 3 роки тому

    Uu so is SOM similar to clustering?

  • @Selmy2003
    @Selmy2003 10 років тому +2

    Thank you.

    • @tkorting
      @tkorting  8 років тому

      +Hend Selmy thanks for your feedback
      Please subscribe to my channel and share this video with your peers.
      Regards

  • @snackbob100
    @snackbob100 4 роки тому

    i dont understand what affects how far they move to a direction

  • @Democracy_Manifest
    @Democracy_Manifest Рік тому

    Good video. Good man

  • @camillabianco4820
    @camillabianco4820 7 років тому +1

    thank you!

    • @tkorting
      @tkorting  7 років тому

      +Camilla Bianco many thanks for your feedback
      please like and share the video And subscribe to my channel
      best regards

  • @valeriipotokov9094
    @valeriipotokov9094 10 років тому +1

    Thank you!

    • @tkorting
      @tkorting  9 років тому

      Valerii Potokov Thanks for your feedback
      please subscribe to my channel and share this video with your peers.
      Best regards

  • @gregerz20
    @gregerz20 10 років тому

    thank you! very good video!

    • @tkorting
      @tkorting  10 років тому

      Dear gregerz,
      Thanks for your valuable feedback.
      Please subscribe to my channel and share this video with your peers.
      Regards

  • @googlable
    @googlable 7 років тому +1

    Thanks man

    • @tkorting
      @tkorting  7 років тому

      thanks for the feedback
      please like/share the video and subscribe!
      regards

  • @hendrik6720
    @hendrik6720 5 років тому

    unintentional asmr is putting me to sleep. watch this if u have watched too much asmr and everything else doesnt work.

    • @tkorting
      @tkorting  5 років тому +1

      Subscribe to my channel and good night

    • @hendrik6720
      @hendrik6720 5 років тому

      @@tkorting cant believe I missed hitting that subscribe button. thanks for the video!

    • @tkorting
      @tkorting  5 років тому

      you missed because you fall asleep :D

  • @alicefantazzini1590
    @alicefantazzini1590 8 років тому +1

    Great! Thank you so much :)

    • @tkorting
      @tkorting  8 років тому

      +Alice Fantazzini thanks for your feedback
      Please subscribe to my channel and share this video with your peers.
      Regards

  • @AAGachi
    @AAGachi 6 років тому +1

    thanks for sharing

    • @tkorting
      @tkorting  3 роки тому

      Thanks for the feedback, please subscribe to my channel

  • @chrissgouros7282
    @chrissgouros7282 4 роки тому

    is this SOM or Kneighbors algorithm?

    • @tkorting
      @tkorting  4 роки тому

      Thanks for your comments. Indeed both algorithms seem similar from this video.
      The only difference is the connection between the clusters, or in this case neurons, allowing a smooth convergence.
      Please subscribe to my channel
      Regards

  • @MubsMaster
    @MubsMaster 5 років тому +1

    thanks for the video :)

    • @tkorting
      @tkorting  5 років тому

      Thanks for your feedback
      Please subscribe to my channel
      Regards

  • @许航-d7d
    @许航-d7d 7 років тому +1

    thanks!from tu munich

    • @tkorting
      @tkorting  7 років тому

      thanks for your feedback
      please like/share the video and subscribe
      regards

  • @01_abhijeet49
    @01_abhijeet49 Рік тому +1

    tysm😢

  • @RishabhGoyal
    @RishabhGoyal 7 років тому

    How is it different from K-Means ?

    • @tkorting
      @tkorting  7 років тому

      thanks for your question.
      please like/share and subscribe to my channel
      the main difference from k-means is that each cluster converges "alone" to one of the found centers, although in SOM all the clusters are connected, generally in 2D matrices, and when one of them converges to a place, it influences all the neighboring clusters also, allowing a smoother convergence to the clusters.
      regards

  • @androidterminal3924
    @androidterminal3924 11 місяців тому

    thank you bhai

  • @saimaabbas1020
    @saimaabbas1020 6 років тому

    sir... I need intrusion detection system matlab source code ....plz sir. sir i can research on IMPLEMENTATION OF AN INTRUSION DETECTION SYSTEM BASED ON SELF ORGANIZING MAP but i cant find matlab code sir plz help me

    • @tkorting
      @tkorting  6 років тому

      Thanks for the feedback, please like and share the video and subscribe to my channel.
      I am not an expert on intrusion detection, but maybe someone that sees your comment here can help you.
      Regards

    • @hendrik6720
      @hendrik6720 5 років тому

      what you want to do is look for outliers in your data. do test cases and optimize against false positives.
      thats the best I can give u without knowing more about your setup.

  • @uditarpit
    @uditarpit 6 років тому

    what is an neuron? is it just a data point?

    • @tkorting
      @tkorting  6 років тому

      Thanks for your feedback, please like and share the video and subscribe to my channel.
      In this case the neuron has the same feature space of the input data. So it can be considered as a data point. The convergence of the neurons is given by competition between all neurons.
      Regards

    • @waynebutane1338
      @waynebutane1338 5 років тому

      As far as I have understood SOMs and neural networks, the neurons are not data points. Neurons are a mathematical function that consists of an input function, an activation function, and an output function. While it might be a good representation to show the neurons in the feature space of the input data, it is not actually the neuron that changes its position, but the winning neuron's weight vector (A vector containing all weights between in the input layer and the neuron) is shifted in the direction of the input vector.

  • @niroshapriyadarshani6407
    @niroshapriyadarshani6407 11 років тому

    was helpful. Thanks a lot.

  • @MatBat__
    @MatBat__ 2 роки тому +1

    Valeu!

  • @qq315465327
    @qq315465327 7 років тому +2

    So similar to k nearest mean, at least visually.

    • @tkorting
      @tkorting  7 років тому +2

      Thanks for your comments.
      Please like and share the video and subscribe to my channel.
      You are right to perceive that both algorithms are similar. The most important difference is that the clusters are connected, and the user determines the structure of the network, therefore the convergence of SOM is smoother.
      Regards

    • @hendrik6720
      @hendrik6720 5 років тому

      thats because SOMS are a generalization of PCS which is itself a generalization of k means.

  • @hassangharbi3687
    @hassangharbi3687 7 років тому +1

    bravo

    • @tkorting
      @tkorting  7 років тому

      Thanks!
      Please like/share/subscribe.
      Regards

  • @nmana9759
    @nmana9759 3 роки тому

    How is this different than k means algorithm?

    • @tkorting
      @tkorting  3 роки тому

      Hi, the main difference is that centroida here are connected to each other. So when one cluster is updated, the neighbors are updated too. Check previous discussions in this video about the same topic.
      Please subscribe to my channel.
      Regards

  • @alexemanuel8875
    @alexemanuel8875 2 роки тому

    o sotaque não engana, é Br