Can you find area of the Green shaded Triangle? | (Quadrilateral) |

Поділитися
Вставка
  • Опубліковано 3 гру 2024

КОМЕНТАРІ • 23

  • @jamestalbott4499
    @jamestalbott4499 18 годин тому +1

    Thank you! Thank you for breaking the problem down, solving by using a ratio.

    • @PreMath
      @PreMath  17 годин тому

      Happy to help!😀
      You are very welcome!
      Thanks for the feedback ❤️

  • @連-x5h
    @連-x5h 23 години тому +1

    Here is another solution that does not require trigonometric functions.
    This use the "area ratio is equal to the base ratio".
    You can make an auxiliary line from E to B.
    Then Set triangle EAB to a.
    a + (3a/7 * 9/20) = 25
    a = 3500/167
    triangle CEF =3a/7 * 11/20 = 825/167

  • @imetroangola17
    @imetroangola17 23 години тому +3

    *Outra forma de ver a questão:*
    [ABC] - [CFE] = [AEFB]
    sen θ × (200x² - 33x²)/2 = 25
    167(sen θ × x² )/2 = 25
    *(sen θ × x² )/2* = 25/167
    [CFE] = 33(sen θ × x² )/2
    [CFE] = 33 × 25/167
    *[CFE] = 825/167 cm²*

  • @AndreyDanilkin
    @AndreyDanilkin 20 годин тому +1

    S(ACB)=S(ACF)+S(AFB)=11s+9s; S(ACF)=S(CEF)+S(EFA)=3t+7t=11s -> t=11s/10; 20s=3t+25 -> s=250/167; S(CEF)=3t=3*(11/10) * 250/167 = 3*275/167 = 825/167

  • @himo3485
    @himo3485 23 години тому +1

    (3x+7x)(11x+9x) - 3x*11x = 200x² - 33x² = 167x² = 25 x² = 25/167
    area of the Green triangle : 33x² = 825/167(cm²)

  • @johnbrennan3372
    @johnbrennan3372 19 годин тому

    Can also be done by joining A to F and working out the ratios of two pairs of triangles having the same heights . Let area of triangle AFB= t, so area of triangleAFE = 25-t and let area of green triangle =g etc.

  • @sorourhashemi3249
    @sorourhashemi3249 12 годин тому

    Thanks so challenging

  • @santiagoarosam430
    @santiagoarosam430 23 години тому

    Si AEF=a---> ECF=3a/7 . Si BFA=b---> FCA=11b/9 ---> a+b=25---> b=25-a ---> a+(3a/7)=11b/9=11(25-a)/9 ---> a=1925/167 ---> Área verde EFC =(3/7)(1925/167) =825/167 cm².
    Gracias y saludos

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 22 години тому

    If ABF =9x, AFC=11x
    CEF=11x*3/10=33x/10
    AEF =11x *7/10=77x/10
    Then 9x +77x/10=25
    >167x =250
    >x =250/167
    Area of 🔺 CEF =33x/10
    =33*250/10*167= 33*25/167=825/167 sq units

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l 17 годин тому

    Thanks so much sir

    • @PreMath
      @PreMath  17 годин тому

      You are very welcome!
      Thanks ❤️

  • @sorourhashemi3249
    @sorourhashemi3249 12 годин тому

    Area of ∆CEF=16.5x^2 and area of ∆ABC= 100x^2,so 16.5 x^2+25=100x^2, ===>x=0.547 and area of green is 3(0.547)×11(0.547)/2= 4.94

  • @marcgriselhubert3915
    @marcgriselhubert3915 23 години тому

    Area of green triangle CEF = (area of big triangle ABC).((3.x)/(10.x)).((11.x)/(20.x)) = (33/200).(area of big triangle ABC)
    So, by difference, area of AEFB = (167/200).(area of big triangle ABC) = 25. That gives: area of big triangle ABC = 25.(200/167),
    and finally: area of green triangle CEF = 25.(200/167).(33/200) = 25.(33/167) = 825/167. (Very easy.)

  • @MrPaulc222
    @MrPaulc222 22 години тому

    I'm not totally certain of my method here, but will give it a go:
    10x * 20x = 25 + G (for Green area).
    3x * 11x = G
    200x^2 - 33x^2 = 167x^2
    167x^2 = 25
    G = 25*(33/167), so about 5.
    Comes out at 4.94 cm^2
    I suspect the angle at C isn't 90, but it may not matter as it's about proportions.
    Well, it looks about right, visually, but I'll look at the video now.
    Wow! I can't believe I got that right, and I did it more simply, too.
    Wonders never cease.

  • @phungpham1725
    @phungpham1725 19 годин тому

    1/ Label G and A as the areas of the green and ABC triangles respectively.
    We have:
    G = 33/2 . sq x . sin. (C)
    A = 100 . sqx. sin (C)
    --> G/A=33/200
    --> G/33=A/200= (A-G)/(200-33) =25/167
    -> G = 33. 25/167= 4.94 sq cm😅😅😅

  • @TimothyCizadlo
    @TimothyCizadlo 21 годину тому

    It seems to me that once you define the area of ABC as (1/2)*(AC)*(BC)*(sinθ) you end up with 25 = 100x²(sinθ) or 1/4 = x²(sinθ). You can then substitute this x²(sinθ) value into the law of sines for EFC which is 1/2*(3x)*(11x)*(sinθ), which simplifies to (33/2)*x²(sinθ) or 33/8, which is a different answer than presented. I think that the quadrilateral AEFB does not need to be found, and causes some extra errors. Would someone please confirm?
    Edit: I see where my error was. I took the area of the large triangle to be 25 not the area of the quadrilateral to be 25.

  • @wasimahmad-t6c
    @wasimahmad-t6c 22 години тому

    16.5÷ 3.34=4.94

  • @misterenter-iz7rz
    @misterenter-iz7rz 21 годину тому

    Not difficult but need plenty of computation. 😢

  • @cabasantbab
    @cabasantbab 17 годин тому

    16.5 sqx

  • @unknownidentity2846
    @unknownidentity2846 23 години тому

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    The areas of the triangles ABC and CEF can be calculated as follows:
    A(CEF)
    = (1/2)*CE*CF*sin(∠ECF)
    = (1/2)*(3x)*(11x)*sin(∠ECF)
    = (33x²/2)*sin(∠ECF)
    A(ABC)
    = (1/2)*AC*BC*sin(∠ACB)
    = (1/2)*AC*BC*sin(∠ECF)
    = (1/2)*(AE+CE)*(BF+CF)*sin(∠ECF)
    = (1/2)*(7x+3x)*(9x+11x)*sin(∠ECF)
    = (1/2)*(10x)*(20x)*sin(∠ECF)
    = (200x²/2)*sin(∠ECF)
    Now we are able to obtain the area of the green triangle CEF:
    A(ABFE) = A(ABC) − A(CEF)
    25cm² = (200x²/2)*sin(∠ECF) − (33x²/2)*sin(∠ECF)
    25cm² = (167x²/2)*sin(∠ECF)
    ⇒ A(CEF) = (33x²/2)*sin(∠ECF) = (33/167)*(167x²/2)*sin(∠ECF) = (33/167)*(25cm²) = (825/167)cm² ≈ 4.940cm²
    Best regards from Germany

  • @wackojacko3962
    @wackojacko3962 22 години тому

    Too really sharpen your math skills, ignore the caution that the presented diagram is not drawn to scale. Fire away and solve. Then circle back and do it the right way. Too learn maths you gotta do maths! 😊