Feature Engineering Techniques For Machine Learning in Python

Поділитися
Вставка
  • Опубліковано 28 лис 2024

КОМЕНТАРІ • 68

  • @GregHogg
    @GregHogg  Рік тому

    Take my courses at mlnow.ai/!

  • @roblee3667
    @roblee3667 2 роки тому +15

    Run a heat map for all columns when viewing correlations before running PCA, there are way more opportunities for dimensionality reduction.

    • @GregHogg
      @GregHogg  2 роки тому +1

      Oh interesting I should look into this

  • @e_hossam96
    @e_hossam96 2 роки тому +6

    for info: if you delete the column island then you should delete the rows containing value 1 as well or you will have the other encoded columns equals zero in all.

  • @nokroman
    @nokroman Рік тому +1

    i've been lost in feature engineering chapter on the book that i am currently ready for machine learning right now, and straight ahead i found your video, and with the whole 47 minutes i have learned 2-3 things from you and i understand the whole process lot more better now, this all thanks to you Greg! keep up making these types of videos bcs WE NEED YOU!!

    • @GregHogg
      @GregHogg  Рік тому

      Awe this is so nice. So glad to have brought a bit of value. Thank you so much for the encouragement and support, it means a lot. Happy learning 😄

  • @arsheyajain7055
    @arsheyajain7055 2 роки тому +4

    Been waiting for this one!! Amazing video! Thanks Greg

    • @GregHogg
      @GregHogg  2 роки тому +1

      Glad to hear it! No problem 👍😊👍

  • @mikekertser5384
    @mikekertser5384 2 роки тому +2

    I've waited for this video! Many Thanks! :)

    • @GregHogg
      @GregHogg  2 роки тому +1

      Yup, I know you have been. No problem Mike and thank YOU 😄

  • @Eizengoldt
    @Eizengoldt Рік тому +1

    Greg, your videos are absolutely lovely and reinforce everything I’m learning in my classes, thank you so much

    • @GregHogg
      @GregHogg  Рік тому

      Oh I'm so glad to hear that! Thank you for the support and for the kind words, I really appreciate it :)

  • @jacobsquires
    @jacobsquires Рік тому

    You explain everything in such an easy-to-follow way! Thanks for the amazing video!

    • @GregHogg
      @GregHogg  Рік тому

      Ghost to hear it! Thank you so much, and you're very welcome!

  • @findoc9282
    @findoc9282 Рік тому

    this kind of way is what we need outside the uni class. Enough for PCA knowledge in Uni, let's code!

  • @ShadowD2C
    @ShadowD2C 11 місяців тому +1

    really great comprehensive video, would be great if you did one on how to select features to get the best results for this problem itself

  • @crepantherx
    @crepantherx 2 роки тому +2

    Buddy, I have subscribed you. Please keep uploading more video that helps a lot

    • @GregHogg
      @GregHogg  2 роки тому

      Thanks so much, and I absolutely will!

  • @ashleyb5849
    @ashleyb5849 2 роки тому +2

    Amazing video as always! Super helpful

    • @GregHogg
      @GregHogg  2 роки тому

      Glad you thought so!

  • @hsoley
    @hsoley 2 роки тому +1

    Best of the best!
    Thank you greg, you are the man!

    • @GregHogg
      @GregHogg  2 роки тому

      Thanks so much! I really appreciate that.

  • @gpsvlogs7853
    @gpsvlogs7853 2 роки тому

    You're Gold !! Keep up the good work.

    • @GregHogg
      @GregHogg  2 роки тому

      Thanks so much really appreciate that

  • @rafik1968
    @rafik1968 11 місяців тому

    Thank you a lot for these helpful experiments .. it gave me a lot of ideas in data preprocessing !

    • @GregHogg
      @GregHogg  11 місяців тому

      Super glad to hear it!

  • @MohSmadi-c2m
    @MohSmadi-c2m Рік тому

    Thank you so much. Your efforts are really appreciated.

  • @darshanprabhu3674
    @darshanprabhu3674 Рік тому

    Thanks a lot greg , you have helped me a lot through this videos.

  • @russelllapua4904
    @russelllapua4904 8 місяців тому

    Wouldn't this be called Transformation techniques of preprocessing instead? I thought Dimensionality Reduction would be separate from Feature Engineering, with Feature Scaling making up the 3rd subtopic. So something like:
    Dimensionality Reduction (removing features)
    PCA
    Clustering
    Feature Engineering (creating/transforming features)
    One-Hot
    Binning
    Feature Scaling (normalisation/standardisation of features)
    Your scaling

  • @kashishrajput4934
    @kashishrajput4934 2 роки тому

    Thank you for posting this, i like all of your videos :)

  • @ShaneZarechian
    @ShaneZarechian 3 місяці тому

    at 4:30 after looking it up, "frac=1" sets the fraction of the dataset to shuffle to be 100% of the total dataset, instead of say 25%. didn't really explain that properly

  • @alanjohnstone8766
    @alanjohnstone8766 7 місяців тому

    Well explained., but why do you keep turning everything into numpy arrays? I do not think it is necessary.

    • @GregHogg
      @GregHogg  7 місяців тому

      I guess it's just a habit... Probably not necessary yeah

  • @prasadchavan3562
    @prasadchavan3562 2 роки тому

    great🙌🏻, very helpful keep making more such videos

    • @GregHogg
      @GregHogg  2 роки тому

      Thanks so much, will do!

  • @nhinvalerabayugao1418
    @nhinvalerabayugao1418 8 місяців тому

    many thanks

    • @GregHogg
      @GregHogg  7 місяців тому

      Many welcomes!

  • @lazytocook
    @lazytocook Рік тому

    do u have a tutorial on catBoostencoder

  • @shivanshusharma8154
    @shivanshusharma8154 9 місяців тому

    This is very informative....

  • @ernestoflores3873
    @ernestoflores3873 8 місяців тому

    Thanks! Very usefull!

  • @runbama1013
    @runbama1013 Рік тому

    great job thank you

  • @adilbhatti6299
    @adilbhatti6299 Рік тому

    Wish I could give more likes!

  • @rajpulapakura001
    @rajpulapakura001 Рік тому

    amazing tutorial

  • @imveryhungry112
    @imveryhungry112 2 роки тому

    Thank you I wish i was as smart as you ughhh but at least i learned some from this

  • @ashwanirathi948
    @ashwanirathi948 Місяць тому

    Amazing ❤

  • @cipher4811
    @cipher4811 2 роки тому

    well explained thanks

    • @GregHogg
      @GregHogg  2 роки тому

      You're very welcome!

  • @zsnowboardern9332
    @zsnowboardern9332 Рік тому

    great video. pkease talk slowe for the beginners

  • @hosseiniphysics8346
    @hosseiniphysics8346 8 місяців тому

    tnx

  • @seemunchan1664
    @seemunchan1664 2 роки тому

    Superb

  • @agoodfriend365
    @agoodfriend365 2 роки тому

    thank you bro

  • @Asoville18
    @Asoville18 9 місяців тому

    Thanks man

  • @mouadet-tali4089
    @mouadet-tali4089 2 роки тому

    thank you so much

    • @GregHogg
      @GregHogg  2 роки тому +1

      You are very welcome!!

  • @ahmedaj2000
    @ahmedaj2000 2 роки тому

    thanks!

  • @trongnhantran3358
    @trongnhantran3358 Рік тому

    Love it

  • @ashwanirathi948
    @ashwanirathi948 Місяць тому

    Great

  • @beauclark2199
    @beauclark2199 2 роки тому

    Great vid, but slow down your speaking so lesser experienced people can follow along!

    • @GregHogg
      @GregHogg  2 роки тому

      Thank you. If it is too fast, there is a slowdown option :)

    • @beauclark2199
      @beauclark2199 2 роки тому

      @@GregHogg Yes, i can absolutely slow down the speed of the tutorial. Have a great day

    • @GregHogg
      @GregHogg  2 роки тому

      @@beauclark2199 great! You too!!

  • @jawadidrees-hs9gc
    @jawadidrees-hs9gc 4 місяці тому

    The techniques you showed were very important but don't know why you were ruining it by training on illogical models. I understand that it was just for test purpose but you could do better by training some logical models.

  • @spider279
    @spider279 9 місяців тому +1

    Too long and boring this guy is not straighforward

    • @GregHogg
      @GregHogg  9 місяців тому

      Ikr Screw this guy