Inferring the effect of an event using CausalImpact by Kay Brodersen

Поділитися
Вставка

КОМЕНТАРІ • 40

  • @wilzaidan
    @wilzaidan 10 місяців тому +16

    If you could travel to the future from when you posted this video, you would come to a conclusion that in 2024 this is still extremely relevant. Great presentation!

  • @ebendaggett704
    @ebendaggett704 5 років тому +20

    You, sir, are an outstanding presenter. This was perfect. Thank you for developing and releasing the package and thank you for providing this excellent presentation.

  • @DaarShnik
    @DaarShnik 6 років тому +11

    One of the best talk I've ever seen this is how you should explain things.

  • @maddy2u
    @maddy2u Місяць тому

    It was funny to see that the host and the presenter wore the exact same outfit. It took me by surprise when the host started speaking at the end of the talk (zoomed out view) and the voice was very different.
    Great talk and awesome answers Kay !

  • @sabyasachidas142
    @sabyasachidas142 5 місяців тому

    Wow this video was posted 7 years ago and it is still so relevant today, in the world of “AI”. Great presentation and some of the questions answered at the end were spot on. Thanks for the awesome presentation!

  • @Yorockers
    @Yorockers 2 роки тому +1

    I was reading the reaseach paper but got to know about your video and my week work covered by your 30:38 mins. Amazing presentation!!!!

  • @ayushtripathi4228
    @ayushtripathi4228 Рік тому

    Kay has very concisely explained what a super power a Marketing Analyst has to their exposure. He is a really good presenter.

  • @DenisaLoužilová
    @DenisaLoužilová 10 місяців тому

    i would like to make the option at 16:30 - pre-intervention, intervention and post-intervention, not only the classic pre and post period

  • @mayankgarg3609
    @mayankgarg3609 5 років тому +6

    One of the best presentations. Thanks a ton for explaining this so beautifully!

  • @hygro9625
    @hygro9625 3 місяці тому +1

    28:21
    "can we use this to measure multiple events that overlap in time?"
    "that's an open research question"
    Well I hope someone answered that in the last 8 years because that's why I'm here

  • @javierdelgadonoriega8204
    @javierdelgadonoriega8204 2 роки тому +1

    What if we dont have a high correlated time series to train the model ¿

  • @sarnathk1946
    @sarnathk1946 3 місяці тому

    Its all imputation finally :) I loved the approach! Thanks for the presentation!

  • @micaelakulesz9387
    @micaelakulesz9387 2 роки тому

    FANTASTIC Presentation!

  • @vladimirtoomach
    @vladimirtoomach 2 роки тому

    окей, если несколько тритментов, почему мы не можем посчитать один, а потом его вычесть из временного ряда во втором тритменте, чтобы оставить влияние только одного изменения?

  • @programmingwithjackchew903
    @programmingwithjackchew903 2 роки тому

    what if we only got post period, is it feasible to do it?

  • @jingbohou4471
    @jingbohou4471 4 роки тому

    A very clear presentation about the CAUSAL IMPACT tool! Thanks!

  • @tamas5002
    @tamas5002 Рік тому

    He is amazing presenter! Many thanks

  • @lakshmank
    @lakshmank 5 років тому +1

    Excellent Presentation on Causal Analysis

  • @calidata
    @calidata 2 роки тому

    Can independent variables in the above example be considered to be instrumental variables?

  • @xdxn2010
    @xdxn2010 4 роки тому +1

    great talk and great questions from Q&A session. want to know more about how to choose the predictor time series.

  • @soonmi8278
    @soonmi8278 3 роки тому

    Wow! Really cool library, amazing presentation. Can't believe I didn't know this was a thing.

  • @marcoceran4669
    @marcoceran4669 3 роки тому

    Amazing presentation, I am currently working with this tool and you made things so much clearer, congratulations

  • @rajavelks6861
    @rajavelks6861 2 роки тому

    Thanks, Kay Brodersen
    Rajavel KS, Bengaluru.

  • @mumtahinahzia7312
    @mumtahinahzia7312 6 місяців тому

    Excellent presentation.. Thank you!

  • @katyasotiris9667
    @katyasotiris9667 Рік тому

    Thank you for the presentation. Must be noted that the validity of this approach is entirely dependent on the ability to accurately extrapolate the control scenario based on observational data. In a nutshell, it relies on our ability to 'randomize' the treatment and control groups via adequate control variables. If, on the other hand, we miss a key variable in our extrapolation model, the estimated causal effect of the variable in question will be biased. This causal estimation is nothing but a way to approximate a randomized experiment scenario via a model which attempts to control for all relevant outcome drivers.

    • @noufamukhtar6507
      @noufamukhtar6507 Рік тому

      Exactly I agree with you, It is like a prediction based on a prediction.

  • @Snayderstone
    @Snayderstone 5 місяців тому

    Thank you for this video, it helped me a lot for my research. you're great

  • @ChristopherKeune
    @ChristopherKeune 4 роки тому +2

    This made my career

  • @rickmanofthealan3625
    @rickmanofthealan3625 3 роки тому

    I keep being amazed!

  • @fabianguiza2420
    @fabianguiza2420 3 роки тому

    Fantastic talk. Thanks for sharing

  • @yogeshdhingra4070
    @yogeshdhingra4070 Рік тому

    Such a great explaination! Thank you

  • @dwhdai
    @dwhdai 4 роки тому +1

    Great talk!

  • @dexterpante
    @dexterpante 7 років тому

    Thanks! I like the summary() function!

  • @spikeydude114
    @spikeydude114 2 роки тому

    Great video

  • @user-wi9po1ki6l
    @user-wi9po1ki6l 5 років тому

    excellent explanation!

  • @sm11ax
    @sm11ax 2 роки тому

    This is so amazing

  • @siimsainas3598
    @siimsainas3598 6 років тому

    How is CasualImpact different from a common marketing mix modelling project?

  • @davidpomerenke3233
    @davidpomerenke3233 Рік тому

  • @thesepages2316
    @thesepages2316 3 роки тому

    Fantastic talk! Thanks for sharing