Finding eigenvalues and eigenvectors of a non-defective 3x3 matrix

Поділитися
Вставка
  • Опубліковано 9 лют 2025

КОМЕНТАРІ • 10

  • @BIGCASIO
    @BIGCASIO 2 місяці тому

    Just what I was looking for, thanks! Thanks for the trick at the end where v_2 and v_3 are free. Does that method work for matrices like this?

    • @davidfriday7498
      @davidfriday7498  2 місяці тому

      When there are two free variables, then yes, this will work well.

  • @TC_seven_
    @TC_seven_ Рік тому +1

    The part we came here for is the part you decided to use a calculator instead of showing us how it's done 😢

    • @davidfriday7498
      @davidfriday7498  Рік тому

      Are you referring to the part where we put the matrix into reduced row echelon form? If so, feel free to reference this playlist on the subject of elementary row operations, row echelon form, and reduced row echelon form:
      ua-cam.com/play/PLbXD_y3xfhTY0oIwklv9HTmHU8RJbFeNc.html

    • @brosisjk3993
      @brosisjk3993 8 місяців тому +1

      its just basic gaussian elimination, you can find tons of tutorials on that

    • @Salamanca-joro
      @Salamanca-joro 8 місяців тому

      I​@@brosisjk3993 its not its not even related

  • @vihudoesnothing
    @vihudoesnothing Рік тому +1

    david saturday

  • @Hemmy77
    @Hemmy77 5 місяців тому

    (3-♤)(♤+1)= -♤^2+4♤+3

    • @davidfriday7498
      @davidfriday7498  5 місяців тому

      So... not really sure what you are intending with this comment, but it is definitely inaccurate. Expanding the left side would give -♠^2+2♠+3 rather than what we see on the right side of your equation.