Three dimensional current and conservation

Поділитися
Вставка
  • Опубліковано 19 гру 2024

КОМЕНТАРІ • 35

  • @zwischenzug5324
    @zwischenzug5324 3 роки тому +8

    This guy is a really clear instructor. Nicely done.

  • @alexvishnevskiy5413
    @alexvishnevskiy5413 2 місяці тому

    Me watching this only halfway through my algebra class. I’m just mesmerized by math at this point and love seeing how far/advanced math gets and the different kinds of math. It’s really cool.

  • @jacobvandijk6525
    @jacobvandijk6525 4 роки тому +13

    So from now on, when you see the level of water in your bathtub going down just think of it as a decreasing probabililty that you will drown in it.

  • @shuangrenzhao4201
    @shuangrenzhao4201 4 роки тому +4

    I have seen the video of 28 and 29. There are problems. In this two section try to prove dN/dt=0. The condition is psi(x,t) is 0 at infinity. and d psi(x,t)/dt is bounded. This condition is is not enough. psi(x,t) is 0 at infinity is not enough. Assume psi(x,t) is proportion to 1/r, here r is distance from origin to the field point. Then psi(x,t) is 0 at infinity, but the integral along the surface to psi(x,t) is not 0. Even this surface is a sphere with its radius infinity.
    Hence, psi(x,t) close to 0 faster than 1/r, at r -> infinity.

    • @abaaba1422
      @abaaba1422 3 роки тому

      Those conditions are for 1d

    • @Iceyer-su1et
      @Iceyer-su1et Рік тому

      Yes, you are correct. In fact, if we consider the condition that the integral of the probability density has a finite value, you will find that ψ had better converge to zero with an order of of 1/r^(1.5+δ).

  • @cafe-tomate
    @cafe-tomate 2 роки тому +3

    In my country Gauss' law is Green-Ostrogradski theorem.

    • @AdenKhalil
      @AdenKhalil 3 місяці тому

      In physics it's called Gauss Law and in mathematics it's called Gren-Ostrogradski theorem

  • @sutopamodak6247
    @sutopamodak6247 Рік тому +1

    Great lecture from a great person..

  • @LokeshAhlawat-nn1bv
    @LokeshAhlawat-nn1bv 6 років тому +4

    great professor

  • @mg18boss
    @mg18boss 6 років тому +4

    Great intuitive explanation for the probability of finding the particle between a & b!

  • @sombal1999
    @sombal1999 5 років тому +7

    Amazing how he takes such a strange concept and makes it so easy to understand!

    • @shuangrenzhao4201
      @shuangrenzhao4201 4 роки тому

      I agree. It is a wonderful quantum mechanics course I never joined.

  • @MrDREAMSTRING
    @MrDREAMSTRING 3 роки тому +1

    What a great lecture!

  • @johng7602
    @johng7602 3 роки тому +1

    as an engineer, i love this video, because there re tables!

  • @iwonakozlowska6134
    @iwonakozlowska6134 4 роки тому +3

    Current is probability per unit time , or current is probability per unit time and unit area ?

    • @shubhamanand9414
      @shubhamanand9414 4 роки тому

      I am also waiting for someone to explain this.

    • @alvaroquevedosaldias2782
      @alvaroquevedosaldias2782 4 роки тому +4

      One dimensional is per unit time, three dimensional is per unit time per unit area

    • @hanbao1178
      @hanbao1178 4 роки тому +2

      @@shubhamanand9414 Because in 3D the psi also need to fullfill normalization. \int|psi|^2dxdydz=1. So [psi] is L^-3/2

    • @akashshful
      @akashshful 3 роки тому +2

      The current in the lecture is actually current density, so it is probability per unit time per unit area. The area(2 dimensional) is actually the area perpendicular to the current flow, so it only works in 3D. In 2D, current density is probability per unit time per unit length because the current is flowing perpendicular to a length(1 dimensional). In 1D, it is probability per unit time because the current is flowing perpendicular to 0 dimensions.

    • @sonalibhuniya4355
      @sonalibhuniya4355 Рік тому

      ​@@akashshfulthanks a lot

  • @ИосифМогучий
    @ИосифМогучий 4 роки тому

    Muito obrigado

  • @not_amanullah
    @not_amanullah 4 місяці тому

    Thanks ❤️🤍

  • @not_amanullah
    @not_amanullah 4 місяці тому

    This is helpful ❤️🤍

  • @hadlevick
    @hadlevick 6 років тому +2

    The polydynamics of the movement generates pseudo-autonomy as material property, of the autogenous phenomenon; existing.(...)
    Simultaneous as my unidimensional variability...
    unidimensional variability = live-beings

    • @shuangrenzhao4201
      @shuangrenzhao4201 4 роки тому

      I have seen the video of 28 and 29. There are problems. In this two section try to prove dN/dt=0. The condition is psi(x,t) is 0 at infinity. and d psi(x,t)/dt is bounded. This condition is is not enough. psi(x,t) is 0 at infinity is not enough. Assume psi(x,t) is proportion to 1/r, here r is distance from origin to the field point. Then psi(x,t) is 0 at infinity, but the integral along the surface to psi(x,t) is not 0. Even this surface is a sphere with its radius infinity.
      Hence, psi(x,t) close to 0 faster than 1/r, at r -> infinity.

    • @jacobvandijk6525
      @jacobvandijk6525 4 роки тому

      Don't call me a "unidimensional variability", please! ;-)

  • @hadlevick
    @hadlevick 6 років тому +1

    ...but not the last...

  • @amribrahim7850
    @amribrahim7850 3 роки тому

    Insightful lecture

  • @andrewstallard6927
    @andrewstallard6927 6 років тому +2

    Here are the solutions to Problem Set #2.
    I do not guarantee their correctness.
    Please edit, comment and correct.
    docs.google.com/document/d/1M1Z4EVFY25RjeSOqw-iTt3ln_eFD9eU-zErn52mzEek/edit?usp=sharing

    • @bartomiejbanas9871
      @bartomiejbanas9871 3 роки тому

      Hey mate, can you share your solution?
      I done some maths, but not sure if it is correct :c

  • @ゾカリクゾ
    @ゾカリクゾ 6 років тому +1

    first