The Fast Fourier Transform Algorithm

Поділитися
Вставка
  • Опубліковано 31 січ 2025

КОМЕНТАРІ • 134

  • @acatisfinetoo3018
    @acatisfinetoo3018 Рік тому +17

    This video is 10 years old and is still the most complete and concise video on the subject 💯

  • @sub-harmonik
    @sub-harmonik 10 років тому +27

    5:30 to skip review of big-O and DFT stuff, good video thanks

  • @sz7063
    @sz7063 6 років тому +18

    Thank you so much!! So clear!! I read the book, resulting in feeling hopeless, and your explanation just lightens up my world. ^_^ Thanks again!

  • @TimSweet
    @TimSweet 11 років тому +6

    Awesome video thank you! Explained in ten minutes what I couldn't understand my professor was trying to say in three hours.

  • @vinsavi
    @vinsavi 7 років тому +1

    Best clear cut explanation , this video helps to jump from FT to FFT and understand the computational efficiency.
    Come with some prep study of FT and do an actual calculation in excel then come here and you are done!

  • @Isti115
    @Isti115 5 років тому

    At 9:33 you say "x sub zero" and I found that a bit confusing later in the video, when I forgot where it's came for, but now I have realized that it's more like "x sub oh". :)
    Thanks for the great video! It really helped me!

  • @allsignalprocessing
    @allsignalprocessing  12 років тому +2

    no, at 11:10 it is just splitting even and odd index terms (splitting N = 8 DFT into 2 DFTs of N = 4). The full bit reversal (x(0) x(4) x(2) x(6) ) occurs after three stages of splitting - see 15:08

  • @tim_arterbury
    @tim_arterbury 8 років тому +14

    Super helpful! I'm trying to make an audio spectrum analyzer. This has gotten me closer to understanding the concept, thanks!

    • @tharakaratnayake
      @tharakaratnayake 6 років тому +1

      did you build it ? can you share the circuit diagram?

    • @CanaDan
      @CanaDan 2 роки тому +2

      me too. iv been looking around kinda everwhere for good information on how this all works and how to calculate audio into something viewable

    • @tim_arterbury
      @tim_arterbury 2 роки тому +1

      @@CanaDan One tricky bit I’ve learned recently. You will want to skew the visualization horizontally towards the right. For audio, the FFT contains a ton of detailed high frequency information so if you just visualize the FFT as is, it is hard to see the bass/miss areas. You want to skew the visualization to emphasize the bass and mid regions for regular viewing as you might see in a spectrum analyzer in your DAW

  • @allsignalprocessing
    @allsignalprocessing  11 років тому +17

    Yes, good catch. x[8] should not be on slide 4 at 10:04, but it should be x[0] x[2] x[4] x[6] as Colo Ricatti pointed out. Somehow I skipped x[4] when counting.

    • @lad4694
      @lad4694 3 роки тому

      Spent 20 mins trying to figure if there was something I'd missed lol. Will come back to the comments more often in the future

  • @gynxrm2237
    @gynxrm2237 11 місяців тому

    the best i have watched so far..

  • @trendytrenessh462
    @trendytrenessh462 2 роки тому

    Somebody please get this guy a raise

  • @stevenz995
    @stevenz995 9 років тому +29

    Finally someone explains FFT that people can understand!!!!

    • @nanwu4733
      @nanwu4733 9 років тому +2

      哪来的8啊

    • @stevenz995
      @stevenz995 9 років тому +1

      Nan Wu 诶。。。 你怎么也看这个了

    • @stevenz995
      @stevenz995 9 років тому +1

      Nan Wu 什么8?

    • @nanwu4733
      @nanwu4733 9 років тому +1

      Steven Z 就扫了一眼封面就看到了x[8]

    • @ioptomato
      @ioptomato 7 років тому

      真的是眼力很好啊!

  • @ZatoichiRCS
    @ZatoichiRCS Рік тому +1

    This video had so much potential but glossed over so so much.

  • @prateek6502-y4p
    @prateek6502-y4p 4 роки тому +7

    Feel bad for Mr. Gauss

  • @bbrealey
    @bbrealey 7 років тому +2

    Thank you, this was super helpful in understanding the transition from DFT to DFFT.

  • @Tunatunatun
    @Tunatunatun 10 років тому +77

    At 12:00, shouldn't the first left numbers be 0, 2, 4 and 6?

  • @SunHail8
    @SunHail8 Місяць тому

    frankly, i didn't get this 8:09 - N > n, k isn't great value too because of Nyquist limit (actually, k sample rate, the're no any sense in such calculations - it computes damn lot of ghost frequencies, because it increases sample rate.

  • @bachkhoa1975
    @bachkhoa1975 8 місяців тому

    This is a good overview of FFT. It would be nice to explain how the DFT convolution sum is derived. Also, the de-interlacing of the inputs was glossed over (not explained clearly) but only the reversed binary notation was mentioned (this is just an after-the-fact observation of How, not an explanation of Why). Readers who dive deeper into the splitting of a larger N-point FFT into two smaller N/2-point FFT’s, or understand the relationships between the twiddle factors (and their periodic nature) would understand and retain better the FFT technique (and be able to conquer any arbitrary size of N-point FFT (N being a power of 2, of course).

  • @flemmejuaokh
    @flemmejuaokh 6 років тому

    I highly suggest going back to second-year advanced calculus textbooks. There're many well-rounded explanations of FFT rather than what we have in DSP textbooks.

  • @PikaGMS
    @PikaGMS 11 місяців тому

    i just want to say that i love you man

  • @uranium-h3o
    @uranium-h3o 21 день тому

    9:05
    I don't think the sum for even terms Σ(r=0 to (N/2)-1) x[2r] * (w_N/2)^kr is the DFT for N/2 samples since it should evaluate both the function x and the complex exponential at 2r instead of x at 2r and the exponential at r to be the DFT, and same for the sum for odd terms.
    This comment is supposed to be a question ...

  • @moazwalead7174
    @moazwalead7174 2 місяці тому

    GREAT THANK YOU , HELPED A LOT

  • @dhimanbhowmick9558
    @dhimanbhowmick9558 8 років тому

    Thank you very very much ,Barry, very nice and deep explanation. Your way of explanation is very good. Thank you so much.

  • @bggbbdg5625
    @bggbbdg5625 4 роки тому

    To calculate the cost in the 13:42. It should be 2(N/2)^2+N/2, the next steps will be similar. So the final cost will be 3/2N+1/2N logN. It is because that the w of the lower half are simply negative of those of the upper half. So the cost should not be counted. Of course under big O notation, the final answer is still O(NlogN). You are really helpful, but there are some minor mistakes.

  • @introductories
    @introductories 28 днів тому

    FANTASTIC

  • @hzlin6655
    @hzlin6655 7 років тому

    there is a lot of interesting points at 13:41. please check that, if it is wrong.

  • @allsignalprocessing
    @allsignalprocessing  12 років тому +2

    Yes, those end up being the twiddle factors - see them in the example diagram for N=8 at 15:14

  • @MrPsverma
    @MrPsverma 8 років тому +6

    all important things at a place!!!

  • @Net_Flux
    @Net_Flux 11 місяців тому

    Not sure why you left out the recursive relation between the odd and even functions and the DFT. I was so confused where the speed gain was from.

  • @SalokinX
    @SalokinX 4 роки тому

    The complexity calculation for the FFT as you explained in the video is incorrect.
    2 summations of half size of the array will be N(N/2 • 2), which is N^2.
    The benefit of FFT is from the fact that
    W_N^rk = -W_N^r(k-N) when k ≥ N.
    This is due to the symmetric property of the exponential function:
    e^j2π = -e^jπ
    Now you only have to compute the FT for half the array and the other half can be constructed by negating those terms, so you end up with complexity
    N(N/2) for the first split.

  • @efraincaballero7482
    @efraincaballero7482 9 років тому +1

    this is beautiful, thanks man!

  • @atulpol93
    @atulpol93 11 років тому +9

    In butterfly diagram it should be x[4] instead of x[8] ,right?

    • @allsignalprocessing
      @allsignalprocessing  11 років тому +6

      Yes. There is an annotation at 10:07 that points out the problem, but that may not be visible on your device. I have also uploaded a corrected version of this video to my channel, called The Fast Fourier Transform (FFT) Algorithm (c)

  • @clo7473
    @clo7473 3 роки тому

    @1:21 it should be N complex multiplies and N complex adds (not N-1) ... there are as many multiplies as there are adds

  • @rodericksibelius8472
    @rodericksibelius8472 2 роки тому

    As an electronics technician of only a 2 year Associate in Science Technology degree in electronics for 37 years, and retired now, who helped engineers design, test breadboard and build / troubleshoot practical low frequency RLC circuits and also at the microwave frequencies for building 'cascaded microwave stripline amplifiers' in the 4 to 30 GHZ range for use in the real world, I had never used Fourier Transforms nor Laplace Transforms, I only used High Tech Oscilloscopes, Spectrum Analyzers, Vector Network Analyzers, SMITH CHARTS, Voltmeters, Ammeters, Frequency counters and computers, and sometimes used ALGEBRA and TRIGONOMETRY to solve electronics circuits problems In the laboratory and in the REAL WORLD,
    I have great RESPECT for the Geniuses of ELECTROMAGNETICS Pioneers, who had derived the mathematical physics of all the basics the we based our technology from: James Clerk Maxwell, Hertz, Gauss, Faraday, Lenz, Oersted, Henry, Steinmetz, Heaviside, Tesla, Weber, and many more, including STEVE WOZNIAC.

  • @esrayeniaras9292
    @esrayeniaras9292 4 роки тому

    Excellent explanation. Helped a lot. Thanks!

  • @mudassarshahzad1285
    @mudassarshahzad1285 7 років тому +3

    i am gonna implement FFT in verilog and previously i was a moderate knowledgeabout FFT but after watching this video get through from this Thanks saving my life :v

  • @Kaiser1234100
    @Kaiser1234100 7 років тому +1

    How would the butterfly diagram (@ 15:06) change if there were numerous iterations of inputs? For example if N=128 but the 8 channels structure is maintained? Thanks

  • @manjumanl222
    @manjumanl222 2 роки тому

    Wan , you're the best .

  • @junbozuo6474
    @junbozuo6474 7 років тому

    Great explanation on Butterfly algorithm!

  • @anonyan9832
    @anonyan9832 5 років тому +1

    You missed one of the main parts: How to compute X[k+N/2]. So you only take k from 0 to N/2. Based on this, you didn't prove that the asymptotics is 2*(N/2)^2.

  • @llewgibson
    @llewgibson 7 років тому

    I seen your channel mate, really love the content. Subscribed straight away, We should connect!

  • @amanuelamente6214
    @amanuelamente6214 9 років тому +3

    X[k] = Xe[k] + Wn,k*Xo[k]. Index for X runs from 0 - 7, but that of Xe and Xo runs from 0 - 3. Please reply how to deal with X's when the index runs above 3. (I'm assuming N=8)

  • @Cyranek
    @Cyranek 6 років тому +3

    fuck me this is hard

  • @chispun2
    @chispun2 5 років тому +1

    Like si crees que Sergio y compañía no se han visto el vídeo, pero la recomendación ahí queda.

  • @ser29009
    @ser29009 9 років тому

    you are my hero .. I think I will use the website too .. thanks

  • @cyl3477
    @cyl3477 7 років тому

    Really good video!!! Clearly explained!!! thankyou!

  • @cyl3477
    @cyl3477 7 років тому

    I just understood FFT for the first time!

  • @natebennett8189
    @natebennett8189 7 років тому

    14:53 he cancels out the N^2/N (=N) saying "for capital N large enough, this term dominates". Someone, please help me, why do you drop the +N?

    • @sarthakj84
      @sarthakj84 7 років тому

      Awesome explanation. Made it very clear. Thanks

  • @sivonparansun
    @sivonparansun 7 років тому

    This video saved my ass. Thank you Barry

  • @inverse_functor
    @inverse_functor 5 років тому

    Thank you for sharing your knowledge.

  • @marcvandijken7442
    @marcvandijken7442 8 років тому

    I don't know if you ever check comments for this particulair video since it's been a while since you've uploaded it, but I have a question: how do you get O(((N^2)/2)+N)? I know you explained it in the video (at around 12:00), but I don't understand it. Thanks in advance!

  • @mattanova
    @mattanova 2 роки тому

    perfect explanation, thank you !

  • @CAIJianping
    @CAIJianping 11 років тому

    there might be sign errors: -1 should be used for X(k+N/2)

    • @allsignalprocessing
      @allsignalprocessing  11 років тому

      I'm having a hard time finding the equation you are referring to. Could you give me a time stamp in the video and be a bit more specific? Thanks.

    • @CAIJianping
      @CAIJianping 11 років тому

      Hi, sorry for the unclear description.There might be a sign error in the example graphs.

    • @lukmackul
      @lukmackul 11 років тому +10

      CAI Jianping why dont you just give the time in the video when the example graph appears

  • @intelligenceservices
    @intelligenceservices 8 років тому

    where can i learn more about what "k" and "w"(omega) and all these greek symbols mean? i'm studying too many things and it is just hard to remember what they mean.

  • @rafafafayo
    @rafafafayo 11 років тому +1

    Very cool, but maybe it lacks some schemas to express more the ideas of the simplification.

  • @binchyster
    @binchyster 12 років тому

    Very good thank you! Nice and clear and well explained.

  • @Jsmith32t
    @Jsmith32t 12 років тому

    When you pull the WN^k term out at 7:55, is that term known as the twiddle coefficient?

  • @MehrdadAkhavan224
    @MehrdadAkhavan224 4 роки тому

    where is the input X[4] in the block diagram?

  • @SidsArt
    @SidsArt 8 років тому

    Thanks a lot Sir.. You are awesome! ;-)

  • @shivamjalotra7919
    @shivamjalotra7919 5 років тому

    Thankyou for the video, its great

  • @varunnegi7202
    @varunnegi7202 10 років тому

    just what i wanted..thanx a lot :)

  • @Irwat808
    @Irwat808 11 років тому

    There shouldn't be an x[8] term, right? Because then N would be 9?

  • @goku5591
    @goku5591 5 років тому

    well done brother

  • @shahdokaOfEgypt
    @shahdokaOfEgypt 6 років тому

    Great video! Thanks

  • @seeva92
    @seeva92 8 років тому

    How it is n = 2r for even and n = 2r+1 for odd.. Can you explain please?.. Lets say if n = 8, for even -> n=2r -> 2*4 = 8. whereas,
    for odd -> n=2*r+1 => 9

    • @ShuvamNandi
      @ShuvamNandi 8 років тому

      Let us take the case that N is 8, the samples are numbered X[0], X[1], X[2], ... till X[7]. By dividing them into even and odd samples, X[0], X[2], X[4], and X[6] are grouped together, and X[1], X[3], X[5], and X[7] are grouped together. The value of r ranges from 0 to N/2 - 1. Thus, We can say that r is in the range of 0 to 3 (N/2 - 1 = 8/2 - 1 = 4 -1 = 3), making 2r and 2r+1 fall in the same range as well. Hope this makes things clear :)

  • @marceloricatti6017
    @marceloricatti6017 12 років тому +1

    10:08 its x[0] x[2] x[4] x[6]

  • @bridgeasparagus5437
    @bridgeasparagus5437 4 роки тому

    where's all the cosines and sines in the equations?

  • @LizaCharalambous
    @LizaCharalambous 10 років тому +2

    Thanks a lot that was really helpful. Great Job :)

  • @philphil7551
    @philphil7551 7 років тому

    ist there an advantage of bit reversed positioning ?

  • @MPaulHolmesMPH
    @MPaulHolmesMPH 10 років тому

    Great video. Thank you.

  • @_white.rabbit_
    @_white.rabbit_ 7 років тому

    How do you choose appropriate W values ?

  • @zhanjizhu5345
    @zhanjizhu5345 2 роки тому

    what will it be if N = 30 ?

  • @wanglin406
    @wanglin406 7 років тому

    Could somebody explains what if the signal is 10 points sampled(which is not 2^N), please?

  • @mdorghammm
    @mdorghammm 8 років тому

    Great video

  • @philphil7551
    @philphil7551 7 років тому

    sorry i dont get it... first example N = 8.... second example N = 8 again but more stages... help pls

  • @harshavardhanasrinivasan3125
    @harshavardhanasrinivasan3125 8 років тому +1

    While solving decimation in time and frequency algorithm of fft we used only DFT why not IDFT sir.

  • @ajayagarwal3200
    @ajayagarwal3200 9 років тому

    beautifully explained (y)

  • @likhithareddy5384
    @likhithareddy5384 7 років тому

    Linear filtering methods based on dft problems

  • @cassandriel
    @cassandriel 7 років тому

    Is that the power of j or i?

    • @kurianbinu3383
      @kurianbinu3383 4 роки тому

      If you are electrical engineer like me, we use j

  • @fadlylado
    @fadlylado 10 років тому +1

    Thanks a lot...

  • @AaaRrrLllUS
    @AaaRrrLllUS 11 років тому

    Thanks a ton.!!!

  • @augustodutra3839
    @augustodutra3839 3 роки тому

    I just read the fast and fourious transform.

  • @chemistrywaalla
    @chemistrywaalla 7 років тому

    Its awesome :)) !..

  • @dr.m.senthilkumar6279
    @dr.m.senthilkumar6279 10 років тому

    really good n useful

  • @lwwm192
    @lwwm192 10 років тому

    very nice

  • @ЧолакКостянтин
    @ЧолакКостянтин 10 років тому

    what is "j" ????

  • @krutarthpatel9283
    @krutarthpatel9283 7 років тому +1

    Good one

  • @rajatmalhotra4633
    @rajatmalhotra4633 8 років тому

    awesome

  • @NisargJain
    @NisargJain 6 років тому +2

    15:07 muck fe

  • @ahmedalmoola8191
    @ahmedalmoola8191 2 роки тому

    Good video but the ads are very distracting. if your intention to help, minimize or remove the ads. thumb down.

  • @taylorklitschko8546
    @taylorklitschko8546 11 років тому

    Can anyone make a subtitle :目?

  • @TheCaitlinlopez
    @TheCaitlinlopez 11 років тому

    Sorry but gauss was not, Fourier was

  • @성혁윤-c1c
    @성혁윤-c1c 9 місяців тому

    15:33 ♡♡

  • @raymondzhao9557
    @raymondzhao9557 2 роки тому

    interesting!

  • @sifsif2725
    @sifsif2725 4 роки тому +1

    LMAO imagine waiting 31 years for your image to be processed xD

  • @jannastevens4086
    @jannastevens4086 6 років тому

    well mama what about how well we are doing in skewl... the Kids

  • @الاستاذالمساعدعماداحمدالمشهدان

    هاذه صورت بابا اني هبه احبك هواي انته وعالتك اني حبكم هواي باي

  • @xavieraxiak6866
    @xavieraxiak6866 Рік тому

    Crap audio.