Question 12: KPMG Interview Questions part 1| data engineers | Unpivot

Поділитися
Вставка
  • Опубліковано 4 лис 2024
  • In this video I have discussed on Interview question asked in KPMG interview for data engineers.
    Question 1:
    You have a PySpark DataFrame named sales_data_df that represents monthly sales data for different products and stores.
    After the transformation The new DataFrame should have three columns: 'Product', 'Month', and 'Sales'. Each row in the new DataFrame should represent the monthly sales data for a specific product.
    sales_data = [
    ('Product_A', 100, 150, 200),
    ('Product_B', 120, 80, 110),
    ('Product_C', 90, 130, 180),
    ('Product_D', 200, 160, 120)
    ]
    schema = StructType([
    StructField('Product', StringType(), True),
    StructField('Jan_Sales', IntegerType(), True),
    StructField('Feb_Sales', IntegerType(), True),
    StructField('Mar_Sales', IntegerType(), True)
    ])
    sales_data_df = spark.createDataFrame(sales_data, schema)
    Solution is in PySpark
    Check out this video and do let me know your doubts we can connect on
    linkedIn : / priyam-jain-0946ab199
    Do subscribe @pysparkpulse for more such Questions.
    #pyspark #spark #bigdata #bigdataengineer #dataengineering #dataengineer #deloitte #pwc #mnc

КОМЕНТАРІ • 4

  • @tanmaykapil5362
    @tanmaykapil5362 3 місяці тому +1

    expecting many more interview questions from you till now i have enjoyed every session of yours.

    • @pysparkpulse
      @pysparkpulse  3 місяці тому

      Sure I am trying to gather questions and make video on that.
      Glad you liked it

  • @swarajrandhvan9057
    @swarajrandhvan9057 8 місяців тому +1

    Nice Explanation! Thank you!