Is e^x=ln(x) solvable?

Поділитися
Вставка
  • Опубліковано 18 січ 2025

КОМЕНТАРІ • 699

  • @blackpenredpen
    @blackpenredpen  2 роки тому +81

    We will make b^x and log_b(x) tangent to each other here: ua-cam.com/video/uMfOsKWryS4/v-deo.html

  • @Macieks300
    @Macieks300 4 роки тому +812

    "We are not doing real mathematics."
    -blackpenredpen

    • @thomaskember4628
      @thomaskember4628 4 роки тому +18

      It looks like pretty real mathematics to me. I have always thought real and imagery numbers both exist. They are both items in the study of mathematics. Therefore these labels are not really suitable.

    • @glacifiess
      @glacifiess 4 роки тому +9

      @@thomaskember4628 yeah people start using the term complex numbers instead, but imaginary do be sound cool so

    • @thomaskember4628
      @thomaskember4628 4 роки тому +10

      glacifiess A complex number is not the same as an imaginary number, it has a real component. When I was learning mathematics at school, I thought imaginary numbers must be the lest interesting part of mathematics because as soon as they are introduced, we go on to complex numbers.

    • @klong4128
      @klong4128 4 роки тому +1

      The ee... = e(ee...) begining assumption is Wrong Infinite series ! Thus the final a+bi derived from Wrong Assumption violate the complex definition ! Thus Real=Complex , x=z give
      people people the wrong idea/logic mixed up ! Similarly you can prove Girl = Man exactly the same ! ! !

    • @joshurlay
      @joshurlay 3 роки тому +3

      @@klong4128 Are you okay?

  • @Umbra451
    @Umbra451 3 роки тому +278

    “We are not doing real mathematics. We are doing complex mathematics.” I need that on a shirt

    • @dannyyeung8237
      @dannyyeung8237 3 роки тому +7

      One of the solutions to this is infinity because e^inf=inf and ln(inf)=inf

    • @nevo2329
      @nevo2329 Рік тому

      @@dannyyeung8237no

    • @fiiral5870
      @fiiral5870 Рік тому +4

      @@dannyyeung8237thats alos what I thought with e^e^e^e^… which divergences to positive inf.

    • @vwlz8637
      @vwlz8637 Рік тому +7

      ​​​@@dannyyeung8237infinity is not a number. It's just a placeholder for "impossibly large". It's just something that numbers approach but never really reach.
      All what uve done proves is that both functions diverge as x approaches infinity. But lots of functions diverge. We wouldn't say all functions that diverge "equal" eachother when x is infinity. What is meant by divergence is that it just keeps growing endlessly without limit the higher u increase x.
      U can also apply the same logic to the equation 2x = x+ 1.

    • @redpepper74
      @redpepper74 11 місяців тому +1

      @@vwlz8637Completely depends on the number system you define your function on. There’s no value for infinity in the reals but there is one in the extended reals (i.e. ℝ ∪ {∞})

  • @daphenomenalz5784
    @daphenomenalz5784 4 роки тому +1778

    The solutions for this equation were way too complex that i couldn't even imagine

    • @blackpenredpen
      @blackpenredpen  4 роки тому +237

      Well, I couldn't either : )

    • @daphenomenalz5784
      @daphenomenalz5784 4 роки тому +18

      ( :

    • @dannyyeung8237
      @dannyyeung8237 3 роки тому +25

      One of the solutions to this is infinity because e^inf=inf and ln(inf)=inf

    • @alomirk2812
      @alomirk2812 3 роки тому +64

      @@dannyyeung8237 actually no because this is in an indeterminant form

    • @LetoTheGodEmperor
      @LetoTheGodEmperor 2 роки тому +90

      @@dannyyeung8237 Wow this is so terribly wrong

  • @yungy1209
    @yungy1209 4 роки тому +338

    black pe^e^e^e^e^e^...n red pe^e^e^e^e^e^...n

    • @jagatiello6900
      @jagatiello6900 4 роки тому +6

      «Infinitely many e's...wow!»

    • @CeRz
      @CeRz 4 роки тому +5

      @@jagatiello6900 but if there is infinite amount of e's then he would never get to the letter n HMMMMM

    • @TheDeadOfNight37
      @TheDeadOfNight37 3 роки тому

      Black peen red peen

  • @vinaybanoth2435
    @vinaybanoth2435 3 роки тому +188

    Simple math:
    BLACK PEN
    RED PEN
    Complex math:
    BLACK PEN
    RED PEN
    BLUE PEN
    .
    .
    .

    • @Killer_Queen_310
      @Killer_Queen_310 11 місяців тому +1

      even more complex math:
      +Purple Pen

    • @πτΩαπσ
      @πτΩαπσ 10 місяців тому

      @@Killer_Queen_310 quaternion

  • @ProCoderIO
    @ProCoderIO 4 роки тому +169

    It's only through this channel that I learned of the Lambert W function and have become fascinated, wondering why it was never mentioned in college-level calculus.

    • @samueldeandrade8535
      @samueldeandrade8535 Рік тому +16

      Why it should be mentioned?

    • @Trenz0
      @Trenz0 Рік тому +42

      I'd never heard of it before either. Upon looking into it more, the reason is probably that
      1. It deals with complex numbers which generally isn't covered until later in college
      2. The applications are really niche and not something a student in college algebra would use until way later if at all

    • @Cyrusislikeawsome
      @Cyrusislikeawsome Рік тому +8

      It's quite artificial, imo. Does come up naturally that often, but rather usually in these sorts of intentionally awkward constructions.
      I think it was mentioned/used at some point in my linear algebra class, though. Would need go trawl through the notes

    • @jorenheit
      @jorenheit Рік тому +6

      ​@@Cyrusislikeawsome it comes up plenty of times in physics. First thing that comes to mind is that it is part of Wien's constant (when solving for the maximally emitted wavelength of a black body).

    • @Cyrusislikeawsome
      @Cyrusislikeawsome Рік тому +3

      @@jorenheit I'm p sure that's the one of two occasions I had in mind aha. Genuinely, any more?

  • @NeelTigers
    @NeelTigers 4 роки тому +59

    Reals: Nope..no solution to this thing..
    Complex numbers: Hold my “i”s

  • @ЖеняОрёл-д2г
    @ЖеняОрёл-д2г 4 роки тому +426

    Your biggest fan from Russia! Love your videos so much, you're my best math teacher (and English too:)) since 2018, thank you!

    • @blackpenredpen
      @blackpenredpen  4 роки тому +88

      Thank you! I am very happy to hear this! : )

    • @hiler844
      @hiler844 4 роки тому +15

      здрасьте

    • @redblasphemy9204
      @redblasphemy9204 4 роки тому +16

      о я тоже смотрю его с 2018
      помню было весело когда приходилось на уроках математики переводить его речь в голове на русский

    • @ЖеняОрёл-д2г
      @ЖеняОрёл-д2г 4 роки тому +2

      @@hiler844 доброго вечерочка)

    • @ЖеняОрёл-д2г
      @ЖеняОрёл-д2г 4 роки тому +2

      @@redblasphemy9204 я к тому времени уже в универе учился, так что видео были кстати)

  • @thedoublehelix5661
    @thedoublehelix5661 4 роки тому +321

    Let me guess, it involves the lambert w function

    • @particleonazock2246
      @particleonazock2246 4 роки тому +40

      I was going to say there would be fish, but unfortunately, they weren't used today.

    • @ffggddss
      @ffggddss 4 роки тому +13

      @@particleonazock2246 "Have you got any fish?"
      "Go fish!"
      Fred

    • @assassin01620
      @assassin01620 4 роки тому +2

      @@ffggddss "Then he waddled away~ (waddle waddle)"

    • @Lamiranta
      @Lamiranta 4 роки тому +5

      @@particleonazock2246 Just put the lambert W function. And you got your fish BACK.

    • @MrRyanroberson1
      @MrRyanroberson1 4 роки тому

      i commented my own solution- take the equation at 1:58 and multiply by e^x. take W on both sides to get x=e^x. then solve

  • @blackpenredpen
    @blackpenredpen  4 роки тому +785

    Note: The following equations have the same solutions!
    1. e^x=ln(x) *this video*
    2. e^x=x
    3. x=ln(x)
    4. e^e^e^...=x *this video*
    4. x=ln(ln(ln(....)
    This is a super nice property when you have f(x)=f^-1(x). See Mu Prime Math's video for more details: ua-cam.com/video/53lBKCBrENY/v-deo.html

    • @miguelalvarez5905
      @miguelalvarez5905 4 роки тому +9

      I tried an alternate version of this problem by proposing the following set of equations:
      1) exp(x)=ln(x)
      2) exp(-x)=ln(-x)
      Combining both equations, I ended solving sinh(x)=2πi (I am not considering all the logarithm branches in the complex world, I just picked ln(-1)=-iπ) and my final result was:
      x= ln{[π+-√(π^2-4)]/2} + iπ/2
      Is that correct?
      P.S.: Greetings from a big fan in Spain.

    • @estelle_chenxing
      @estelle_chenxing 4 роки тому +2

      #YAY

    • @fabiotiburzi
      @fabiotiburzi 4 роки тому +1

      Drop the bomb

    • @manuelsalazar5257
      @manuelsalazar5257 4 роки тому +1

      Would this work tho? Because since it was e^e^x it would always be an even number of e's. So the replacement to convert it into e^x would include the solution, but it could also include more solutions.
      I guess this is salvaged by the fact that only one solution was found

    • @bowiebrewster6266
      @bowiebrewster6266 4 роки тому

      I was going to ask this exact question since:
      exp(x) = ln(x)
      x exp(x) = x ln(x) = exp(ln(x))ln(x)
      W[x exp(x)] = W[ln(x)exp(ln(x))]
      x = ln(x)

  • @bbsonjohn
    @bbsonjohn Рік тому +11

    I am glad that you showed the Lambert W function. I have learned QFT and statistical mechanics for sometimes, but I didn't know about the W function. That will be helpful.

  • @adershvarshnei5198
    @adershvarshnei5198 4 роки тому +114

    3:21 wow in australia.

  • @bhgtree
    @bhgtree 4 роки тому +50

    Test: solve e^x=ln(x).
    me: "eeeeeeeeeeee...."

  • @hamiltonianpathondodecahed5236
    @hamiltonianpathondodecahed5236 4 роки тому +62

    3:34
    We are not doing Real Mathematics PANIk
    We are doing Complex Mathematics kALM
    We are doing Complex Mathematics PANIk
    But it's bprp kALM

  • @maybedonn
    @maybedonn 4 роки тому +13

    i stared at the thumbnail for five minutes thinking before clicking. this strategy works

  • @average_student4378
    @average_student4378 4 роки тому +22

    I took interest in maths after watching your videos.
    Stay safe
    love from Nepal

  • @assassin01620
    @assassin01620 Рік тому +141

    Once you get
    x = e^(e^x)
    Can you multiply both sides by e^x?
    That would give you
    xe^x = (e^x)e^(e^x)
    Then you could use the Lambert W function on both sides to get
    x = e^x

    • @mathieuaurousseau100
      @mathieuaurousseau100 Рік тому +25

      That last step doesn't work. The Lambert W function isn't single valued so you only get that any solution of x=e^x is a solution of x=e^(e^x) (which is something you could have obtain in an easilier way) but not that all solutions of x=e^(e^x) are solution of x=e^x

    • @avasam06
      @avasam06 Рік тому

      Check pinned comment equation 2

    • @emeraldng2910
      @emeraldng2910 Рік тому

      @@mathieuaurousseau100 The question is to "find a solution"...

    • @mathieuaurousseau100
      @mathieuaurousseau100 Рік тому

      @@emeraldng2910 But the title was "solve"
      More importantly, there can be cases where f(f(x))=x has a solution but f(x)=x don't

  • @DjVortex-w
    @DjVortex-w 4 роки тому +48

    Wait... if e^e^e^e^... doesn't converge, is it valid to say
    x = e^e^e^e^... x = e^x
    ?

    • @blackpenredpen
      @blackpenredpen  4 роки тому +39

      Not in the reals : )

    • @charbeleid193
      @charbeleid193 4 роки тому

      When it doesn't converge you just don't consider it a solution just as you would do with an imaginary number while working in the reals

    • @ekeebobs7520
      @ekeebobs7520 4 роки тому +3

      Is there such a thing as convergence in the set of complex numbers?

    • @Noname-67
      @Noname-67 4 роки тому +2

      @@ekeebobs7520 of course there is

    • @helloitsme7553
      @helloitsme7553 3 роки тому +1

      @@ekeebobs7520 dependent on what your question is:
      - Is there a concept as convergence in the complex numbers? Yes! if you know epsilon delta/N definitions you can now interpret the absolute value as the complex modulus and this new definition still makes sense. for example, it is a theorem then you can then say lim (xₙ+iyₙ)=lim xₙ +i lim yₙ. that way it is easy to continue intuition and also taking limit of sum is sum of limit etc is still true this way.
      - Does this converge in the complex numbers? absolutely not still. simply because the sequence e,e^e, e^e^e,... has a very fast growth

  • @ukas8343
    @ukas8343 4 роки тому +21

    I loved the 🐧,the song and not to mention "we are not doing real mathematics"✌🏻😌

  • @lucasvandesande3089
    @lucasvandesande3089 6 місяців тому +1

    Since e^x and ln(x) are inverse functions, as you drew. The only places where they can intersect is when the mirroring in the line y=x is on the same point. That means that the output of e^x=x=ln(x).
    This is a faster way to arrive at e^x = x. This always works for inverse functions.

  • @garywashington9391
    @garywashington9391 10 місяців тому +1

    Nice work. I see that if we multiply both sides by x and solve we get
    a. x exp(x) = x * ln(x)
    b. Now apply the Lambert W function to both sides to obtain x = W(x * ln(x))
    c. Now if we assume we can use the following identity, W(x*ln(x)) = ln(x), so the last result becomes x = ln(x)
    d. We can solve x = ln(x) using the Lambert W function to -1 =- ln(x) * exp(-ln(x)) --> -ln(x) = W(-1)
    e. x = exp(-W(-1)) = W(-1)/(-1) = -W(-1) or x = -W(-1)

  • @inx1819
    @inx1819 4 роки тому +61

    No comments? :(
    why is it unlisted?

  • @JockyJazz
    @JockyJazz 3 роки тому +5

    Before: Black pen red pen.
    After: Here comes blue pen.

  • @Mathelite-ii4hd
    @Mathelite-ii4hd 4 роки тому +30

    when you reached x=e^e^x you could simply multiply e^x on both sides and then take a lambert w function and you would end up with x=e^x.anyway.it was a flossy video:)

    • @Dreamprism
      @Dreamprism 4 роки тому +3

      Ah. Good point.

    • @blackpenredpen
      @blackpenredpen  4 роки тому +21

      Yes you are right!
      I wanted to show the e^e^... part and that’s why I continued 😃

    • @dannyyeung8237
      @dannyyeung8237 3 роки тому

      One of the solutions to this is infinity because e^inf=inf and ln(inf)=inf

    • @Firefly256
      @Firefly256 3 роки тому

      Wait the link works

    • @ilmaio
      @ilmaio Рік тому

      ​@@dannyyeung8237not the same infinity class. The distance between the curves always increases, going forward. They never touch in the real plan.

  • @mustafamalik4211
    @mustafamalik4211 4 роки тому +6

    black pen red pen, and occasionally, blue pen

  • @InstigationMex95
    @InstigationMex95 4 роки тому +58

    I miss the intro from 2017: " Black Pen Red Pen yaaaay!" Like if you agree

    • @adityakamat9856
      @adityakamat9856 4 роки тому

      @Tropical_Papi It was cringe.

    • @Kdd160
      @Kdd160 4 роки тому +6

      @@adityakamat9856 no

  • @mathiaslist6705
    @mathiaslist6705 Рік тому +2

    This was helping with extending tetration to complex numbers. I remember Dmitry Kouznetsev mentioning this as fixed point of logarithm. I guess it can be found by trial and error but obviously there are other methodes.

  • @DxRzYT
    @DxRzYT 2 роки тому +1

    "pause the video, and think, about, this."
    "... and today we have this guy. ok so-"
    😂

  • @vagabond7199
    @vagabond7199 Рік тому +1

    This is one of my favorite channels!

  • @pNsB
    @pNsB 2 роки тому +20

    My first thought was that if e^x = x, then ln(x) must equal x, which necessarily means that e^x = ln(x). So we can start by writing the question as e^x = x, and then use the W function.

  • @HyperCubist
    @HyperCubist Рік тому +1

    If you treat x as a+bi, and use the (equivalent) e^x = x equation, you can show that there are an infinite number of solutions on the complex plane. The solutions are all in Quadrant I, asymptotically approaching the curve b = e^a, where b takes on the values of pi/2 + 2*pi*n for large n.

  • @abhishekraj2336
    @abhishekraj2336 4 роки тому +11

    first time heard "lambert W function".

  • @ffggddss
    @ffggddss 4 роки тому +6

    Note that bprp isn't wearing a mask, but his microphone IS - a full face..; no, a full BODY cover! Surely this puts him in compliance with Gov. Newsom's rules.
    Not to mention the extreme social distancing he's practicing.
    OK, first, replace x with z = x + iy
    Take exponential of both sides:
    z = x + iy = e^(e^z) = e^(e^(x+iy)) = e^(eˣ(cosy + i siny)) = e^(eˣcosy) e^(ieˣsiny) = e^(eˣcosy) [cos(eˣsiny) + i sin(eˣsiny)]
    x = e^(eˣcosy) cos(eˣsiny)
    y = e^(eˣcosy) sin(eˣsiny)
    At first glance, I don't see where you can go from there. [I also tried starting with the polar form, and taking ln of both sides, which turned out even worse.]
    Let's see how we can get anywhere with this. I smell the Lambert W function, somehow...
    Fred

  • @samkay675
    @samkay675 4 роки тому +12

    Awesome video as always!! I started watching your channel years ago and now you are really helping with my Further Math lessons (I’m from England). If I have a problem to suggest to you, where can I submit it?? Thanks again for a great video!

    • @Oliver-wv4bd
      @Oliver-wv4bd 2 роки тому +1

      You can always email him, he responds to those sometimes. Though since you posted this comment last year, I imagine you've finished your Further Maths A Level by now anyway. I've also been doing it the past two years, and I'm relived to have finally done the exams, hell as they were xD. How did you find them yourself?

  • @SumanKumari-rh3lk
    @SumanKumari-rh3lk 4 роки тому +2

    Love from India . I greatly admire your maths skills and teaching .

    • @Cjnw
      @Cjnw Рік тому

      Jai Bharat!!!! 🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳

  • @jongyon7192p
    @jongyon7192p 4 роки тому +4

    The solution is re^ia where
    r=a/sin(a)=e^[a/tan(a)]
    Now this can be drawn on desmos and my god there's a billion solutions

  • @Misteribel
    @Misteribel 2 роки тому

    You know it gets complex when blackpenredpen includes a blue pen.

  • @nicolastorres147
    @nicolastorres147 Рік тому +1

    Having to increase the amount of e’s in the power tower all the way to infinity to be able to reduce it to a single one 🤯

  • @baselinesweb
    @baselinesweb 7 місяців тому

    Very well done.

  • @elyepes19
    @elyepes19 4 роки тому +1

    What I was looking for, a video for the complex natural log. Thank you so much B&Rp!

  • @RohitKulan
    @RohitKulan Рік тому

    Just learned about log and ln in class, this blew my mind

  • @justinmay2295
    @justinmay2295 4 роки тому

    Watching from South Africa. You made me love math man! Keep feeding me

  • @CamEron-nj5qy
    @CamEron-nj5qy Рік тому +2

    Best microphone!

  • @damianbla4469
    @damianbla4469 3 роки тому

    Fun fact for video game fans:
    The mascot used for microphone
    is from the Famicom game "Gimmick!" (released for NES as "Mr. Gimmick") made by Sunsoft.
    This character in this game is one of types of enemies.

  • @nafrost2787
    @nafrost2787 4 роки тому +5

    Can you maybe so a video on how to evaluate the infinite power tower? I guess it's probably with some sort of a sequence and a difference equation, but I would like you to show us how to do that.

    • @herogsm8045
      @herogsm8045 3 роки тому +1

      What do you suggest to prove it please

  • @bhavydugar6665
    @bhavydugar6665 3 роки тому +1

    Holy crap ! I actually thought and tried to solve the equation and got the correct answer . Never thought could do it

  • @peakpersona-yash
    @peakpersona-yash 4 роки тому +2

    Hey man love your t shirt

  • @RashadSaleh92
    @RashadSaleh92 4 роки тому

    Black pen red pen you are the best at what you do

  • @المتصفح-ن1ي
    @المتصفح-ن1ي 3 роки тому

    أفضل أستاذ في الرياضيات هو الأستاذ نوردين ،،،، الجزائر ،،،، 🇩🇿🇩🇿🇩🇿🇩🇿🇩🇿🇩🇿🇩🇿🇩🇿

  • @byteatatime
    @byteatatime Рік тому

    "hello, let's do some math for fun"
    ctrl+w

  • @ruanholtzhausen4000
    @ruanholtzhausen4000 2 місяці тому +1

    X is equal to e^^∞, or eulers number tetrated to infinity.

  • @saxbend
    @saxbend 4 роки тому +1

    Could have done with a demonstration of why an infinite tail of exponents is allowed, when it appeared that it would have to terminate with an x power after a finite and even number of e terms.

  • @useruser400
    @useruser400 4 роки тому +23

    You’re gonna need more pen colors if you keep doing problems like this.
    Love the + C shirt. Only true math geeks get that one. 🤣

    • @randomblueguy
      @randomblueguy 4 роки тому +20

      ‘True math geeks’ aka anybody who’s taken an introductory calculus course.

    • @rickf6375
      @rickf6375 4 роки тому +1

      @@randomblueguy was gonna say that as well lol

    • @ickywitchy4667
      @ickywitchy4667 4 роки тому

      What's that

    • @coleabrahams9331
      @coleabrahams9331 4 роки тому +1

      +C is the constant that must be added when calculating the anti-derivative, right?

    • @randomblueguy
      @randomblueguy 4 роки тому

      @Colinho Abrahamovich
      yes

  • @DanBurgaud
    @DanBurgaud 2 роки тому

    3:25 PAGING DR PEYEM! PAGING DR PEYEM! YOU ARE NEEDED HERE!!!!!

  • @Balawi28
    @Balawi28 3 роки тому

    Lambert W function exists:
    *blackpenredpen
    : I can milk you*

  • @wahyuadi35
    @wahyuadi35 4 роки тому +1

    Ah... Finally, come back with another video. ❤️❤️

  • @dannyyeung8237
    @dannyyeung8237 3 роки тому

    One of the solutions to this is infinity because e^inf=inf and ln(inf)=inf

  • @sourpurin
    @sourpurin 4 роки тому +2

    It's very interesting! I don't understand English very well(?), but, the process you write on the whiteboard is very easy to understand!

  • @cwl7207
    @cwl7207 4 роки тому +6

    I am new for this kind of maths
    Why can’t we take natural log on the both side when e^x=x?🤔
    Is it no way to get the complex number?

    • @stirnersghost7656
      @stirnersghost7656 4 роки тому

      It'll give you lnx = x which is also unsolvable in the reals since lnx is smaller than x

    • @cwl7207
      @cwl7207 4 роки тому

      Stirner's Ghost I see, thank you

    • @sharonjavier736
      @sharonjavier736 3 роки тому

      My solution:
      > e^(x) = Ln(x)
      By multiplying both sides by 'x' ,
      > xe^(x) = x*Ln(x)
      By taking the productlog of sides:
      > x = Ln(x)
      > e^(x) = x
      > e = x^(1/x)
      > e = x^(1/e)^(Ln(x))
      > e = e^[(Ln(x))[(e)^(-Ln(x))]]
      By taking the natural logs,
      > 1 = Ln(x)e^(-Ln(x))
      By multiplying both sides by '-1' ,
      > -1 = -Ln(x)e^(-Ln(x))
      By taking the productlogs;
      > W(-1) = -Ln(x)
      > -W(-1) = Ln(x)
      Therefore;
      x = e^(-W(-1)) = -W(-1) = Ln(-W(-1))

  • @DarkSorcerer
    @DarkSorcerer 4 роки тому +1

    Always enjoying Watching your videos since when I was Grade 6, Nice Video as always! Love from the Philippines!
    And yeah, I am now in Highschool :)

  • @axbs4863
    @axbs4863 Рік тому +1

    e^x = ln(x)
    e^e^x = x
    substituting the equation for x you get an infinite power tower of e^e^e^..., so you can just write e^x = x
    bring to one side: xe^(-x) = 1
    -xe^(-x) = -1
    using the lambert-W function: W(-xe^(-x)) = W(-1) = -x
    x = -W(-1)
    according to wolfram alpha its approximately equal to:
    0.318 - 1.337i

  • @abhishekkhadangaiitdhanbad9953
    @abhishekkhadangaiitdhanbad9953 3 роки тому +1

    A good question be find the minimum distance between e^x and ln(x)
    Hint-line x=y

  • @apikobalt
    @apikobalt 3 роки тому +1

    i love the sound effects

  • @laurensiusfabianussteven6518
    @laurensiusfabianussteven6518 4 роки тому +2

    5:05 i thought the fish is going to be summoned...

  • @lucaayfmlyysiaejdsrtnnervd4646
    @lucaayfmlyysiaejdsrtnnervd4646 2 роки тому

    3:35 "We are not doing real mathematics, we're doing fake mathematics."

  • @derekhasabrain
    @derekhasabrain 4 роки тому

    that hello at the beginning makes me happy:)

  • @prashantshukla6018
    @prashantshukla6018 4 роки тому +1

    Sir ur the best teacher of maths wish u were here in India to teach us ur teaching skills are amazing and u r the best................🙏

    • @Cjnw
      @Cjnw Рік тому

      #JaiBharat!!!! 🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳🇮🇳

  • @beatrixwashere
    @beatrixwashere 2 роки тому

    when i was trying this on my own, at first i multiplied both sides by x to get xe^x=xln(x), and then took the lambert w function to get to x=ln(x)

  • @BartBuzz
    @BartBuzz 10 місяців тому

    Someone may have already mentioned this? One can manipulate the equation e^(e^x)= x by multiplying both sides by e^x. Then applying the Lambert W gives e^x = x. The rest of the solution is as you showed. That eliminates the need to explain e^e^e^e^.....

  • @namnguyenphuong2522
    @namnguyenphuong2522 4 роки тому

    haha. like the way you make it simple to complex to simple. and infinite problems always are insane :)) nice vid.

  • @mateusschmidt_1153
    @mateusschmidt_1153 Рік тому

    i would really love to see how to compute that lamber w function value at the end

  • @Javriprakash
    @Javriprakash 4 роки тому

    Love your videos

  • @DiamondSane
    @DiamondSane 4 роки тому +1

    I was never thinking there are fixed points for exp() (except for transfinite numbers). Nice to know.

  • @76tricolor
    @76tricolor 4 роки тому

    you are really good at maths

  • @dns911
    @dns911 3 роки тому +20

    A funny thing to notice here is that e^x = ln(x) = x is exactly the first term of the Taylor expansion of ln(x) at the point where they should meet (x=1)

  • @0megap
    @0megap 4 роки тому

    This morning, I was asking myself how could I solve ln(x) = e^(x), and I find your video the evening of the same day !

  • @oliviercomte7624
    @oliviercomte7624 Рік тому +1

    What does mean ln x when x is a complex ????? For instance, what is ln i or ln -1 ?

    • @surfgamer7136
      @surfgamer7136 11 місяців тому

      Exactly the same as for real numbers - the answer to the question: "to what degree do you need to raise e to get x". According to Euler's formula, e^(ix)=cos(x)+isin(x). Therefore, ln(i)=ipi/2+i2pi*n and ln(-1)=±ipi+i2pi*n, where n is an integer

  • @maxamedmuuse4882
    @maxamedmuuse4882 4 роки тому

    that last sound really makes my day!

  • @fernandomartinezvillarino9752
    @fernandomartinezvillarino9752 4 роки тому

    Thanks for this video, congratulation since Mexico!!

  • @omkarjoshi9137
    @omkarjoshi9137 2 роки тому

    On that day, we saw blackpenredpenbluepen

  • @derarken73
    @derarken73 2 роки тому +2

    wait. does this mean e^x=lnx e^x=x ?

    • @chunky1306
      @chunky1306 2 роки тому +1

      Yes, he mentions that if f(x) = f^-1(x) its the same as f(x) = x. This is because taking the inverse of a function, its the same as reflecting it along the line y = x. This means that a function and its inverse will always intersect at a point on the line y = x. So finding the intersection of f(x) with y = x is the same as finding the intersection with the inverse function. However, since neither e^x nor ln(x) intersect with y = x this problem has no real solutions.

  • @VenomhuskVideos
    @VenomhuskVideos 4 роки тому +2

    I have that same bob-omb plushie haha

    • @bluepeacemaker
      @bluepeacemaker 4 роки тому

      where'd you get it?

    • @VenomhuskVideos
      @VenomhuskVideos 4 роки тому +1

      @@bluepeacemaker I remember like getting it from an arcade I think

  • @supericeg5913
    @supericeg5913 6 місяців тому

    e^^infinity would have been the perfect oppurtunity to make practical use of tetration.

  • @DanBurgaud
    @DanBurgaud 4 роки тому

    these recursive thing is mind blowing... nice I get to learn new stuffs

  • @not_vinkami
    @not_vinkami 4 роки тому +2

    How long is it when y=e^x is the nearest to y=ln(x)?

  • @MrRyanroberson1
    @MrRyanroberson1 4 роки тому

    by 1:58 i saw it- lambert W! so: x = e^e^x, multiply by e^x, and we get x e^x = e^x e^(e^x). W both sides and you get x = e^x. this also doesn't have a real solution, but no matter! divide by e^x and negate both sides: -xe^-x = -1, so -W(-1) = x

  • @nolanbanfitch5070
    @nolanbanfitch5070 4 роки тому

    i don't even need to solve this, i'm just watching cause i like your videos

  • @hebertysouza5671
    @hebertysouza5671 5 місяців тому

    I really like how him prove e^x = e^(e^x)

  • @ermilooo906
    @ermilooo906 3 роки тому

    AAARRRRGHHHHH TENGKIYUUUU ❤️❤️❤️

  • @jishanaich674
    @jishanaich674 4 роки тому +4

    i was really hoping to hear the *'YOOOOOOOOOOOOUUUUUUUUUUU'* at the end :((

  • @robertocamporesi3331
    @robertocamporesi3331 3 роки тому

    You should try to solve a^x=log_a(x) where a>0. The critical value is a=e^(1/e). For a greater no solutions, for a less two solutions.

  • @patrickcui5139
    @patrickcui5139 4 роки тому

    Watching this at 3:30 AM hits different

  • @Chill----
    @Chill---- 4 роки тому +1

    Blackpenredpen I am genuinely interested in being an expert in algebra and number theory. I am currently in grade 12(A2). Could you please suggest me some books? I really enjoy your videos and they have really influenced me. It would be like a dream come true to take suggestion for brainy maths book(the book with sufficient examples and questions) from a great teacher like you.

  • @redroach401
    @redroach401 11 місяців тому

    First multiply both sides by x and the take w lambert on both sides to get e^x=x. Next multiply both sides by e^-x and -1. Take w again and multiply both sides by -1 to get answer: x=-lambert w(-1)

  • @aidancarlson2147
    @aidancarlson2147 4 роки тому

    AMAZING!! Your skills never stop amazing me!!

  • @quantumbracket6995
    @quantumbracket6995 4 роки тому +1

    the complex part its the hacker's favorite

  • @giuliocalabrisoo2621
    @giuliocalabrisoo2621 Рік тому +2

    My reasoning was that lnx is the inverse function of e^x,so ,since doing the inverse basically means doing the simmetry of the function along the line y=x,solving e^x=ln(x) means finding the points of e^x that are on the line y=x

  • @cyberbeastry8809
    @cyberbeastry8809 4 роки тому

    Cool video BPRP!

  • @chaitanya1999
    @chaitanya1999 4 роки тому +1

    What if we differentiate both sides w.r.t. X