Can You Pass Harvard College Entrance Exam?

Поділитися
Вставка
  • Опубліковано 22 січ 2025

КОМЕНТАРІ • 122

  • @SNOW.0828
    @SNOW.0828 6 місяців тому +59

    Start with the equation 2^X = Y.
    Given:
    Y + Y^2 + Y^3 = 155
    This can be rewritten as:
    Y * (Y^2 + Y + 1) = 155
    Find the factors of 155:
    155 = 155 * 1
    155 = 31 * 5
    Test the possible values of Y:
    Y = 1 does not work.
    Try Y = 5:
    LHS = 5 * (25 + 5 + 1) = 5 * 31 = 155
    Since the left-hand side matches the right-hand side, Y = 5 is correct.
    Thus, we have:
    2^X = 5
    Solve for X:
    X = log(5) / log(2)
    So, the value of X is log(5) / log(2).

    • @srinivasannarayanan8056
      @srinivasannarayanan8056 6 місяців тому +1

      excellent proof.

    • @silverhammer7779
      @silverhammer7779 6 місяців тому +8

      That's the way I did it. The key is realizing that 155 is the product of two primes (5 and 31), which simplifies matters considerably. I hate it when presenters introduce terms (add this, subtract this, etc) without explaining why they chose the particular values that they did.

    • @jacquesbasuiau215
      @jacquesbasuiau215 6 місяців тому +1

      Method is correct if you suppose that x is integer.It' s not the case if x is given as real.

    • @dredaxgaming6099
      @dredaxgaming6099 6 місяців тому +2

      @@jacquesbasuiau215It assumes 2^x is an integer l

    • @footballeditz75
      @footballeditz75 5 місяців тому

      @@silverhammer7779 Dude the thing he did is simple grade 9 mathematics. He simply did factorization of a cubic equation, any person who has graduated high school should be able to do that. I don't think it needs explaining

  • @1976anands
    @1976anands 6 місяців тому +35

    Maybe this is an easier way:
    T = 2^x
    T + T ^2 + T^3 = 5 +25 +125
    T + T ^2 + T^3 = 5 +5 ^2 +5 ^ 3
    So T = 5
    So 2^x = 5
    x Log 2 = Log 5
    x = Log 5/Log 2

  • @eowmob
    @eowmob 6 місяців тому +18

    As apparently some others, I (with a phd in maths, but out of science for years) am a bit confused about the solution. If you guessed t=5, to prove it you can just enter it into the formula, no need to factorise. To factorise, just do polynomial division, no need to guess something wildly like the separation of t^2 into -5t^2+6t^2 etc. Polynomial division tells you algorithmically how to do it.
    Yes, there do exist theorems (and this is well beyond ordinary school maths) that if such a polynomial (with integer coefficients) has a rational (a fraction) solution it must already be an integer and then it will be a divisor of the constant term (155). Hence, it is a good strategy to try divisors of 155 (aka: +/- 1,5,31,155). If your teacher likes you, one of them will work. Once you factorise to degree 2, the other solutions can be found with pq formula or quadratic extension, however you name it. BTW, there do exist (very complicated) methods for degree 3 and 4 too.
    BUT: There is no indication that 2^x is actually rational. To state it clearly: this was just guessing and hoping for the best. Of course, if you have no better idea, it is worth a try.

    • @thejelambar82
      @thejelambar82 4 місяці тому

      I kinda disgaree with "beyond ordinary school"
      Here in Indonesia we learn about rational root theorem in high school. I believe Cambridge Further Math A Level or IB DP also teach about rational root theorem

    • @eowmob
      @eowmob 4 місяці тому

      @@thejelambar82 I sadly believe you. Of course I was talking about Europe and Germany, maybe US, where I strongly doubt you learn this before joining university. Comparing to Cambridge, well... Just lets say this is not what 99.999% of pupils experience.
      It is a well known fact here, that the maths education in Asia is much, much better than it is here.
      Personally, I'm a bit curious if there are other topics which are teached better in the western world than in Asia in return, or.. if our education is generally worse.
      Again, I fear I know the answer.

  • @richardslater677
    @richardslater677 6 місяців тому +47

    Take the step from t^3+t^2+t=155 to t^3-5t^2+6t^2 etc. This seems like a totally random step. Why choose -5 and +6? I love to know the reasoning behind this step.

    • @georgerodionov5941
      @georgerodionov5941 6 місяців тому +13

      By the method of staring at the equation he noticed that 5 is one of the roots. He then chose coefficients so that he could factor out (t - 5) to check if there are other real roots.
      You can as well group like this:
      (t - 5) + (t^2 - 25) + (t^3 - 125) = 0
      (t - 5)(1 + (t+5) + (t^2+5t+25) ) = 0

    • @richardslater677
      @richardslater677 6 місяців тому +1

      @@georgerodionov5941 Oh OK, thank you.

    • @СергейМакеев-ж2н
      @СергейМакеев-ж2н 6 місяців тому +5

      @@georgerodionov5941 I have another proposal: after guessing that 5 is the root, we can notice that t, t^2 and t^3 are all monotone increasing functions (at least in positive t, which is what we are interested in), so their sum is increasing too. And then there cannot be more than one intersection with the horizontal line at height 155.

    • @georgerodionov5941
      @georgerodionov5941 6 місяців тому

      @@СергейМакеев-ж2н yes, this is probably the nicest way to do it

    • @jjeanniton
      @jjeanniton 6 місяців тому +2

      Only solution is x = log₂5 😊😊😊😊

  • @johnbrennan3372
    @johnbrennan3372 6 місяців тому +7

    You can also divide t^3+t^2+t-155 by t-5 to get the other factor

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      Yes, and solve the quadratic equation in 2^x as complex conjugates. Then take the log base 2 of them to yield an infinite number of solutions related to 2 main values.

  • @davidbrown8763
    @davidbrown8763 21 день тому

    Nailed it - thanks for the challenge.

  • @thejelambar82
    @thejelambar82 6 місяців тому +5

    We can use long division to factorise it, much easier and intuitive

  • @StephenHeinz-p1l
    @StephenHeinz-p1l 2 місяці тому

    Since t=5, the binomial would be (t-5). At this point why not use Synthetic Division to determine the t^2+6t+31?

  • @jpl569
    @jpl569 6 місяців тому +1

    I fully agree with @fibonacci_fn ! Since the equation is degree 3, you have to "guess" an integer solution for Y, and Y = 5 comes rapidly (especially when you notice that 155 = 31 x 5) !
    My remark is : we have to show that 5 is the only real solution (and then ln 5 / ln 2 is the only x)...
    For that purpose, we see that f (x) = 2^x + 4^x + 8^x is strictly increasing on R, and the TVI says that it takes a given value 155 for at most a single x.
    (By the way, this avoids the calculation of (Y + Y^2 + Y^3 - 155) / (Y - 5), and the "∆ < 0" of the quotient...). Thanks for your videos !

  • @tombufford136
    @tombufford136 6 місяців тому +2

    You use a solution to a cubic equation which is quite difficult after forming the equation t^3 + t^2 + t -155 = 0. On inspection I would set t to 5 and solve. 125 + 25 + 5 - 155 = 0.

  • @Sam_on_YouTube
    @Sam_on_YouTube 3 місяці тому

    This was a very unintuitive way to solve it. I managed it in my head. Here's how.
    Pick it up from t^3+t^2+t=155
    Add 1 to set up something with better symmetry for factoring:
    t^3+t^2+t+1=156
    (t^3+t)+(t^2+1)=156
    t*(t^2+1)+1*(t^2+1)=156
    (t+1)(t^2+1)=156
    Now we guess that t is a integer. That means we get 2 integer factors of 156. The factors are:
    2*78
    3*52
    4*39
    6*26
    12*13
    Of those, a quick check shows 6*26 works with t=5.
    Then you can continue as you did. But just randomly coming up with t=5 from thin air made no sense.
    I don't know the step you used to factor out t-5. I would have done that with long division. In reality, I skipped it and stopped when I found one solution. Turns out, the other solutions aren't real, but I stopped without proving that.

  • @richardslater677
    @richardslater677 4 місяці тому

    So your solution is to guess t=5 and then randomly guess substitutions such as -30t+31t=t.

  • @TimothyLoftin-l1i
    @TimothyLoftin-l1i 4 місяці тому

    Once yo make the change of variables you can get the real 5 solution by examination. You do the remaining part to show that the other solutions are complex and that you have not overlooked some not-so-obvious real solution

  • @michaeljarmula439
    @michaeljarmula439 4 місяці тому

    Here's a numerical answer (if you want to check your work): X = approximately 2.32193, according to a Microsoft Excel worksheet.

  • @AlexandreA-w5c
    @AlexandreA-w5c 5 місяців тому

    Why not simply divide the cubic equation by (x - 5) to find the quadratic equation?

  • @kyintegralson9656
    @kyintegralson9656 6 місяців тому +4

    Lets not throw out the complex babies w/ the bath water! So, complex roots are given by
    t²+6t+31=0 ⇒ t=√31·[(-3±i√22)/√31].
    To evaluate log of t, we choose the branch cut of the log to be the non-positive real half-line & restrict the arguments of the complex numbers to lie between -π & π. Then,
    log₂(t)=log₂(√31·[(-3±i√22)/√31])=log₂(√31·e^(±iθ)) for θ=cos⁻¹(-3/√31)≅.681π
    ⇒ log₂(t)=log₂(31)/2±iθ/ln(2) where "ln" is the natural log.

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      Why don't you write it to show that there are an infinite number of solutions?

    • @kyintegralson9656
      @kyintegralson9656 5 місяців тому

      @@oahuhawaii2141 You can generalize the solution I mentioned by adding 2nπ, for n any integer, to the expression for θ, but you have to consider consistency & functions becoming multi-valued. For one, the real solution mentioned in the video, should then be generalized to
      t=5 → t=5e^(2ikπ) ⇒ x=log₂5 → x=log₂5+2ikπ/ln(2) for k∈ℤ
      & you should choose k=n, so that all 3 solutions are consistently in the same interval. And, why not generalize further
      t=2^x → t=[2e^(2iπm)]^x for m∈ℤ ⇒ x=ln(t)/(ln2+2iπm)
      So, to at least be consistent w/ the real solution presented in the video, I chose the fundamental interval for the complex plane.

  • @monroeclewis1973
    @monroeclewis1973 6 місяців тому

    😮Independently followed your methods through the cubic equation, but then quickly realized t must equal 5 because only multiples of 5 add up to 155. Synthetic division could have been employed, but was unnecessary. Then solved with logs as you did.

  • @matushorvath
    @matushorvath 6 місяців тому +2

    Step 1: I know 5 is a solution
    ...thanks, that really helps /s

  • @Rka75
    @Rka75 6 місяців тому

    After a step t^3+t^2+t-155=0
    You should take a deriative . D by the monotonicity theorem you can get no more than 1 solution

    • @keerthany7556
      @keerthany7556 6 місяців тому +1

      By taking derivatives we can't find the value of t . instead of the values obtained for critical point which is in complex from

    • @Rka75
      @Rka75 6 місяців тому

      @@keerthany7556 one of the root can be found orally , this is why you just need to prove , that this is the only solution

    • @Rka75
      @Rka75 6 місяців тому

      @@keerthany7556 in this problem this is one of the way of solving, but you can also use a Cardano formula , 2 other roots are complex

  • @suleymancanan
    @suleymancanan 6 місяців тому +1

    Start converting 155 to binary

  • @quantumcat7673
    @quantumcat7673 6 місяців тому +2

    I do not think this guy statement (in the title) is true.

  • @chipthequinn
    @chipthequinn 5 місяців тому +2

    I went to Harvard. There is no entrance exam.

  • @jacksdu13
    @jacksdu13 6 місяців тому +2

    5³ + 5² + 5 = 125+25+5 = 155
    x = ln(5)/ln(2)

  • @RiccardoCarlesso
    @RiccardoCarlesso 5 місяців тому

    Yes. Thanks for asking😂

  • @Jono4174
    @Jono4174 6 місяців тому +8

    33% the question said nothing about “real solutions” 😜

  • @williamolenchenko5772
    @williamolenchenko5772 4 місяці тому

    How can you justify not finding the complex solutions too?

  • @cyruschang1904
    @cyruschang1904 4 місяці тому +2

    2^x + 4^x + 8^x = 155
    y = 2^x
    y + y^2 + y^3 = 155
    y^3 + y^2 + y - 155 = 0
    (y - 5)(y^2 + 6y + 31) = 0
    y = 5, -3 +/- i✓22 (not solutions)
    2^x = 5 => x = (log5)/(log2)

  • @pbassassinz8097
    @pbassassinz8097 6 місяців тому +2

    Saw the problem at first and thought how hard can it be 2^x + 4^x + 8^x=155 answer: x= log5/log2 FML SMH I give up on life.

  • @sumitlathwal-h1z
    @sumitlathwal-h1z 6 місяців тому

    We can frame a quadratic equation in t^2+ 6t+ 31 =0

  • @andrasnoll2559
    @andrasnoll2559 4 місяці тому

    Aaaah I wanted to see the complex solution as well

  • @lillu_h
    @lillu_h 6 місяців тому +5

    Me who just finished 5th grade and have no idea what I just watched😅
    Am I supposed to already know it??

    • @AnnoyingOllie
      @AnnoyingOllie 6 місяців тому +2

      bro no this is like grade 11+ stuff 💀

  • @КатяРыбакова-ш2д
    @КатяРыбакова-ш2д 4 місяці тому

    x=ln5/ln2. оставшееся уравнение m^2+ 6m + 31 = 0 не имеет действительных корней.

  • @franckdebruijn3530
    @franckdebruijn3530 6 місяців тому

    Interesting would be if you would allow complex numbers as solutions. What would be the answer then?

  • @archangecamilien1879
    @archangecamilien1879 4 місяці тому

    Write 155 in binary, then use the appropriate exponents, lol...

  • @harshvardhansingh4593
    @harshvardhansingh4593 5 місяців тому

    y u splitting 155 so tough just do 5 + 5^2 + 5^3 = 5 + 25 + 125 = 155 which makes it clear that its 5

    • @oahuhawaii2141
      @oahuhawaii2141 5 місяців тому

      Your math work isn't rigid. You should be writing that 2^x = 5 is one root to the cubic form of (2^x)^3 + (2^x)^2 + (2^x) = 155 . You still have to find x, and see if the other 2 solutions to the cubic equation are real or complex conjugates.

  • @charles401
    @charles401 4 місяці тому

    Ah, yea....let's just guess 4, no 6...no let's go with 5.
    This could be a Dilbert solution....where the next to last step is:
    "Then a miracle happens "
    As stated ....there is NO Harvard entrance math problem

  • @alphalunamare
    @alphalunamare 6 місяців тому +2

    I think that you are making these up as you go along. Is this realy from Harvard, was the other one realy from Cambridge? They are good fun but perhaps not as hard as your titles suggest?

    • @ananthasrikrishnan906
      @ananthasrikrishnan906 6 місяців тому +1

      @alphalunamare True 💯, I too doubt the same because it is a Question of JEE Mains (Easy to Medium Toughness)

  • @billhayden7127
    @billhayden7127 4 місяці тому

    I've never seen someone write an x that way in my life

  • @dankicks
    @dankicks 6 місяців тому +3

    My brain: There’s a 5 in here, right?
    Me: Maybe. But you’re 40 years old, you might have epilepsy and you had an actual seizure 4 weeks ago.
    My brain: So that’s why I understand absolutely nothing else 😅

  • @robertacancedda1017
    @robertacancedda1017 6 місяців тому

    Si poteva risolvere l'equazione cubica anche scomponendo il polinomio di terzo grado con il metodo di Ruffini, notando che tra i divisori del termine noto, 155, vi è proprio il valore t=5

  • @AbbasGuclu-jn3po
    @AbbasGuclu-jn3po 6 місяців тому +1

    x=log2(5)

  • @ALVINTRUST-x3i
    @ALVINTRUST-x3i 6 місяців тому

    If it is this easy to get to Harvard I need to change colleges right now

  • @caosontong8913
    @caosontong8913 2 дні тому

    can I use casio in this exercise ?

  • @jevonalpha1156
    @jevonalpha1156 6 місяців тому +1

    can use polynomial theorem? Horner scheme? btw it's same with log2(5) right?

  • @Kushalgola-xv2xo
    @Kushalgola-xv2xo 6 місяців тому

    Can we do it like this for faster answer but the ans would be near the original ans not exact
    2^x + 2^2x + 2^3x = 155
    2^6x = 2^7.3( approx )
    On comparing,
    6x = 7.3
    x = 1.21 ( this is my ans )

  • @esunisen3862
    @esunisen3862 3 місяці тому

    Who wants to go in Harvard anyway ?

  • @1141951fraffly
    @1141951fraffly 3 місяці тому

    Harvard College does not have an entrance exam. Oops . . . Can you trust a fast-talking guy like this?

  • @aniketsaha4502
    @aniketsaha4502 6 місяців тому

    Thanks. Very nicely explained ! 👏👏

  • @jahangirtamboli477
    @jahangirtamboli477 6 місяців тому +2

    Let 2^x= y. So y+y^2+y^3=155
    So y(y^2+y+1)=5*31
    After close observation,Equating y=5, gives (y^2+y+1)=31. So conclusion y=5 =2^x
    x = ln 5/ln 2. Very easy to get real solution 😂

  • @ChavoMysterio
    @ChavoMysterio 6 місяців тому

    2ⁿ+4ⁿ+8ⁿ=155
    (2ⁿ)³+(2ⁿ)²+2ⁿ-155=0
    Let h=2ⁿ
    h³+h²+h-155=0
    h³-125+h²-25+h-5=0
    (h-5)(h²+5h+25)+(h-5)(h+5)+1(h-5)=0
    (h-5)(h²+6h+31)=0
    h²+6h+31=0
    h²+6h+9=-22
    (h+3)²=-22
    |h+3|=i√22
    h+3=±i√22
    h=-3±i√22
    2ⁿ=-3±i√22 reject
    h-5=0
    h=5
    2ⁿ=5
    n=log_2(5) ❤

  • @paulgillespie4908
    @paulgillespie4908 6 місяців тому +6

    Just guess that the answer must be a bit bigger than 2 and then iterate. Much easier and faster than his baloney method

  • @melihkaganozge1210
    @melihkaganozge1210 6 місяців тому +1

    X=2.32 approximately

    • @shanonshipley6901
      @shanonshipley6901 5 місяців тому

      That’s what I came up with doing it in my head like my dad taught me at 7 😅

  • @AzttcAzttc
    @AzttcAzttc 6 місяців тому +1

    Here in India we do this kind of problem even harder in 7th grade even in remote villages schools 😂😂 "VANISHING METHOD " ASSUMING AND PUTTING, X=5😂😂😂😂😂😂😂😂😂😂😂

    • @benefactor4309
      @benefactor4309 6 місяців тому +4

      Womp womp my father is a government school teacher.....most village kids suck at calculation

  • @DRob70
    @DRob70 4 місяці тому

    Did he guess the answer like I did?

  • @allanfifield8256
    @allanfifield8256 4 місяці тому

    About 2.5

  • @danburch9989
    @danburch9989 6 місяців тому +3

    If I could pass the entrance exam, I wouldn't need to attend Harvard.

    • @KenFullman
      @KenFullman 6 місяців тому

      Given the choice I'd deliberately fail the entrance exam.

    • @lwmarti
      @lwmarti 6 місяців тому

      Math 55 covers essentially an entire undergraduate curriculum. And people have been known to place out of it. So there would still be plenty of things to keep you entertained for the next few years.

    • @kyintegralson9656
      @kyintegralson9656 5 місяців тому

      I don't wanna be member of a club that wants me as a member.

  • @吳昶霖
    @吳昶霖 4 місяці тому

    令a=2^x
    a+a^2+a^3=155
    a=5 則x=log5/log2

  • @HisHigherness8472
    @HisHigherness8472 5 місяців тому

    155 ÷14x =
    11.071

  • @mwave3388
    @mwave3388 6 місяців тому +2

    Oh this famous Harvard college in Zimbabwe! Veri diffycult equation.

  • @DonatoSumma-t1f
    @DonatoSumma-t1f 6 місяців тому

    I used Ruffini method

  • @davidbennett288
    @davidbennett288 6 місяців тому

    log5/log2..... 5 plus 25 plus 125....

  • @TrânThái-f7g
    @TrânThái-f7g 6 місяців тому

    I'm the first to comment😊😊😊.

  • @sandytanner9333
    @sandytanner9333 6 місяців тому

    2^x=5

  • @stevegreen2432
    @stevegreen2432 5 місяців тому

    Try speaking a bit slower and we might understand what you are saying!

  • @kevinmullen4352
    @kevinmullen4352 6 місяців тому

    155/14 = 11 2/3

  • @Vrajvvvvraj
    @Vrajvvvvraj 6 місяців тому

    By taking log it will easily solved😂😂😂😂😂

  • @serhiishynkaruk6752
    @serhiishynkaruk6752 4 місяці тому

    Extremely simply "hard task".
    ln.

  • @aurochrok634
    @aurochrok634 6 місяців тому +2

    x = log2(5) is an immediately obvious solution

  • @andrewcarr2431
    @andrewcarr2431 5 місяців тому

    ...and that is how you calculate the net worth of Jeff Bezos

  • @galebush1004
    @galebush1004 5 місяців тому

    Clearly not good
    Need to eliminate fake intelligence.
    Teach life skills to high schools.
    Complete teachings
    Buying insurance.
    Car home life insurance
    And different types
    Something actually helpful?!!!!??

  • @cloudy7265
    @cloudy7265 6 місяців тому

    this is not an olympiad problem, this is way too easy

  • @GregMoress
    @GregMoress 4 місяці тому

    I'm black.
    Harvard: "You're in!!!"

  • @alastairgreen2077
    @alastairgreen2077 4 місяці тому

    Forget the complex bullshit.

  • @zdrastvutye
    @zdrastvutye 6 місяців тому

    how about this?
    10 print "higher mathematics-can you pass harvard college entrance exam?"
    20 sw=.1:x=sw:goto 50
    30 dgu1=(2^x+4^x+8^x)/8^x:dgu2=155/8^x:dg=dgu1-dgu2:return
    50 gosub 30
    60 dg1=dg:x1=x:x=x+sw:x2=x:gosub 30:if dg1*dg>0 then 60
    70 x=(x1+x2)/2:gosub 30:if dg1*dg>0 then x1=x else x2=x
    80 if abs(dg)>1E-10 then 70
    print x
    higher mathematics-can you pass harvard college entrance exam?
    2.32192809
    >
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @saathvikbogam
    @saathvikbogam 6 місяців тому +1

    x=log₂5