Can you find area of the Green shaded square? | (Squares) |

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 46

  • @GentlemanH
    @GentlemanH 15 днів тому +3

    I enjoyed that one and managed to solve it first time. Thanks. 🙂

    • @PreMath
      @PreMath  15 днів тому

      I'm glad you liked it! 👍
      Thanks for the feedback ❤️

  • @jamestalbott4499
    @jamestalbott4499 День тому

    Thank you!

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 14 днів тому

    Very nice and enjoyable
    Thanks Sir
    Thanks PreMath
    Good times
    ❤❤❤❤

  • @allanflippin2453
    @allanflippin2453 15 днів тому +2

    I found an intuitive approach, but I'm not sure the steps are valid:
    1) Consider that BD cuts the larger square into two equal areas.
    2) Isosceles triangles DEF and BFG each occupy half the area of the AEFG square. So each half of the larger square is 198
    3) Isosceles triangles DHK and BML each occupy half the area of the green square
    4) Add a point to complete the square formed by KLC. Then it becomes obvious that the KLC triangle occupies 1/4 the area of the green square
    5) The green square = 198 / 2.25 or 88.

  • @timmcguire2869
    @timmcguire2869 14 днів тому +1

    The top left half of the square can easily be shown to be made of 4 congruent triangles. Two of those together equal 99, so 1/2 the area of the square is 2x99=198. The bottom right half of the square can easily be shown to be made of 9 congruent triangles, 4 of which make up the smaller green square. So 4/9 x 198 is 88. No Pythag needed :-)

  • @sorourhashemi3249
    @sorourhashemi3249 13 днів тому

    thanks. So challenging.AG=9.95, .focus on ∆FGB, the side on front of angle 45° = √2/2 BF. So FB =14.11. DH=x, DB =2X-b. ∆LCK~BML, LC=y. And LK= √2y. So √2y/y=19.95-y/√2y. 3y^2-19.95y ====> y= 6.65. ===>b=6.65×√2=9.3765. b^=87.919

  • @MarcoPolo-xu9te
    @MarcoPolo-xu9te 15 днів тому +1

    I used other way. If you draw the line GF to the line DK, you will find out that DK = (4/3) a; therefore, b = DK sqrt ; b^2 = (8/9) a^2 = (8/9) . (3sqrt 11)^2 = 88. Fortunately, the same result, just nearly no geometry.

  • @marcgriselhubert3915
    @marcgriselhubert3915 14 днів тому

    Be c the side length of the big ABCD square. The side length of the blue square is c/2. Then DB = sqrt(2).c, and the side lenght is the green square is DB/3
    as DH = HM = MB (see right isosceles triangles DHK and DML), so the side length of gthe green square is (sqrt(2)/3).c
    The ratio (side length of the green square)/(side length of the blue square) is then (2.sqrt(2))/3), so the rartio of their areas is ((2.sqrt(2))/3)^2 = 8/9
    As the area of the blue square is 99, we conclude that the area of the green square is 99.(8/9) = 88.

  • @lukeheatley4148
    @lukeheatley4148 15 днів тому

    i made it hard for myself by focusing on triangle KCL with side lengths (6.sqrt11 - sqrt2.b) and hypotenuse b.
    so b = sqrt2 . (6.sqrt11 - sqrt2.b)
    3b = 6.sqrt2.sqrt11
    b=2.sqrt2.sqrt11
    b² = 88

  • @marioalb9726
    @marioalb9726 15 днів тому +1

    A= ½d²=99cm² ---> d²=2A=198
    2d = 3s
    s² = 4/9 d² = 88cm² ( Solved √ )

  • @phungpham1725
    @phungpham1725 15 днів тому

    1/ Connect CF. Because F is the midpoint of the diagonal DB -> CF perpendicular to DB-> C,F and A are collinear.
    -> the triangle CKL is a right isosceles
    -> CF=b+ b/2= 3/2 b=AF
    Because AF= asqrt2= sqrt 99x sqrt 2= sqrt 198
    -> 3b/2 = sqrt 198
    -> b=2/3 sqrt198
    Area of the green square=4/9 x 198= 88 sq units😅😅😅

  • @alexundre8745
    @alexundre8745 15 днів тому

    Bom dia Mestre
    Obrigado por mais uma aula
    Grato

  • @onix460
    @onix460 15 днів тому

    a = sqrt(99); DE=sqrt(99); DF=sqrt(a²+DE²) = sqrt(198)
    DB=2sqrt(198); DH=HM=MB => HM= 2sqrt(198)/3
    HM²(square HMLK) = 4*198/9 = 4*22 = 88cm²
    That's all

  • @nandisaand5287
    @nandisaand5287 15 днів тому

    A²=99
    A=Sqrt(99)=3•Sqrt(11)
    Recognizing 🔺️ DHK is a special 45°-45°-90°🔺️, with sides B, B and B•Sqrt(2), DK=B•Sqrt(2).
    KC•Sqrt(2)=B
    KC=B/Sqrt(2)
    KC=B•Sqrt(2)/2
    DC=2•A=DK+KC
    2•3•Sqrt(11)=B•Sqrt(2)+B•Sqrt(2)/2
    6•Sqrt(11)=3/2•B•Sqrt(2)
    B•Sqrt(2)=4•Sqrt(11)
    B=4•Sqrt(11)/Sqrt(2)
    B=4•Sqrt(22)/2
    Area=B²
    =[4•Sqrt(22)/2]²
    =16•22/4
    =4•22
    =88
    Put a box around it.
    [88cm²]
    How exciting.

  • @santiagoarosam430
    @santiagoarosam430 15 днів тому

    F es punto medio de DB y es el centro del cuadrado ---> ABCD =4*99.
    Si LMHK =a ---> CBD =a +a/2 +a/2 +a/4 =9a/4---> ABCD =18a/4 =4*99 ---> a=8*99/9 =88 cm².
    Gracias y saludos.

  • @cyruschang1904
    @cyruschang1904 14 днів тому

    white square (99 cm^2) is 1/4 of the big square area
    green square is 4/18 (= 2/9) of the big square area
    green square = (2/9)(4)(99 cm^2) = 88 cm^2

  • @tedn6855
    @tedn6855 15 днів тому

    I did it a bit easier you can see all the angles are 45 therefore the diagnol is made up of 3 equal parts. So find the diagonol and divide by 3 then square. We know the top square has sides sqrt99 therefore sqrt 2 of that is that diagonol making it sqrt 198. Double that is sqrt 792. Now divide by 3 and get sqrt 88. Making the square 88.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 14 днів тому

    360°ABC/99=3.63ABC 1.2^3.1 (ABC ➖ 3ABC+2).

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 15 днів тому

    First I like to prove that the vertex of the 99 sq cms square(2a*2a=4a^2) is at the mid point(F) of the diagonal.
    1)in triangle DEF
    Angle E= 90 degrees
    Any D =45 degrees
    Angle F= 45 degrees
    Hence DE= EF=2a
    Then DF=√(4a^2+ 4a^2)=a√8
    2) we have proved above that DE = EF
    Hence E is the mid point of AD
    EF II AB
    Hence F is the mid point of BD.
    3) in (1) we have proved DF= a√8
    Hence BD = 2*DF=a 2√8
    4) triangle DHK
    Ang H= 90 degrees
    Ang D = 45 degrees
    Hence ang K = 45 degrees
    Hence DH =HK = b--(1)
    5) in triangle BML
    Ang M= 90 degrees
    Ang B =45 degrees
    Hence any L=45 degrees
    Hence BM =ML = b-- (2
    )
    6) from (1) & (2)
    We may say BD =3b=a 2√8
    b=a2√8/3
    b^2=(a^2*4)*8/9=4a^ 2*8/9=99*8/9=88 sq cms
    Comment please

  • @quigonkenny
    @quigonkenny 15 днів тому

    Let the side lengths of the large square ABCD, the 99cm² square AGFE, and the green square HMLK be a, b, and s respectively.
    Square AGFE:
    A = b²
    99 = b²
    b = √99 = 3√11
    As BD is the diagonal of large square ABCD and GF = FE = 3√11, then F must be the center point of the ABCD. Therefore, AGFE has half the side length of ABCD, so a = 2b = 2(3√11) = 6√11.
    Draw diagonal MK. As side HM of green square HMLK is collinear with diagonal BD, then as ∠CBD = ∠KMH = 45°, MK and BC are parallel.
    As angle pairs ∠LMK and ∠MLB and ∠LBM and ∠MKL are alternate interior angles and thus congruent, and as ∠MKL = ∠LMK = 45°, then all four angles equal 45°. As ML is common, ∆KLM and ∆BML are thus congruent isosceles right triangles and MK = BL.
    Draw diagonal LH let P be the point where MK and LH intersect, and as both lines are diagonals of HMLK, then P is the central point of HMLK and the midpoint of both MK and LH.
    As all internal angles of PLCK are 90° and KP and PL are congruent and adjacent, then PLCK is a square.
    BC = BL + LC
    6√11 = (MK) + LC
    6√11 = MK + (KP)
    6√11 = MK + (MK/2) = 3MK/2
    MK = (2/3)6√11 = 4√11
    Green Triangle ∆KLM:
    KL² + LM² = MK²
    s² + s² = (4√11)²
    2s² = 176
    [ s² = 176/2 = 88 cm² ]

  • @ludosmets2018
    @ludosmets2018 15 днів тому

    Draw perpendicular from F to DK, intersecting side b in point M. The small triangle FHM is isosceles (because angle FHM = 90° and angle HFM = 45°). FH = b/2 (because F is midpoint). DF= sqrt 198 (Pyth). Triangle DHK is also isoceles (because angle DHK = 90° and angle HDK = 45°). So, DH = HK or sqrt 198 - b/2 = b or 2 sqrt 198 - b = 2b or 2 sqrt 198 = 3b. So b= (2 sqrt 198) /3 and b^2= 88.

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 15 днів тому

      FH=b/2 ( ?)
      It is neither a given condition nor it has been proved .

    • @ludosmets2018
      @ludosmets2018 14 днів тому

      @@PrithwirajSen-nj6qq It is easy to prove that triangle EDF = triangle BFG and that triangle DHK = triangle BML and that consequently F is the midpoint of BD and of the side b.

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 14 днів тому +1

      @@ludosmets2018 Thanks a lot for the clear discussion u offered.

  • @AmirgabYT2185
    @AmirgabYT2185 14 днів тому +1

    S=88 cm²

  • @gelbkehlchen
    @gelbkehlchen 2 дні тому

    Solution:
    b = side of the black square = √(4*99) = 2*3*√11 = 6*√11,
    d = diagonal of the black square = √(b²+b²) = b*√2 = 6*√11*√2 = 6*√22.
    g = side of the green square = HM = ML = MB [because isosceles triangle MLB with angles 90°, 45° and 45°] = HK = DH [because isosceles triangle DKH with angles 90°, 45° and 45°] ⟹ g = 1/3*d = 1/3*6*√22 = 2*√22
    area 0f the green square = g² = 4*22 = 88[cm²]

  • @himo3485
    @himo3485 14 днів тому

    99*2=198 Green Square area = 198*4/9 = 88cm²

  • @raffaeleguerrieri5482
    @raffaeleguerrieri5482 15 днів тому

    Su che base AEFG è un quadrato?

  • @MrPaulc222
    @MrPaulc222 15 днів тому

    This proved trickier than I first tbhought.
    I went wrong initially because I over complicated it by using irrationals instead of variables too early.
    But I got there in the end.

  • @Birol731
    @Birol731 15 днів тому

    My way of solution ▶
    The triangles ΔFBG and ΔDFE are congruent isosceles right triangles, and the triangles ΔMLB and ΔDKH are also congruent isosceles right triangles, so:
    [HK]= [KL]=[LM] =[MH]= x
    [MB]= [ML]= x
    [DH]=[HK]= x
    [HM]= x

    [DB]= x+x+x
    [DB]= 3x
    [FG]= [GB]

    [AB]= 2[AG]
    II) A(EFGA)= 99 cm²
    a= √99
    a= 3√11 unit lengths

    [AB]= 6√11
    [DB]= √2*[AB]
    [DB]= √2*6√11
    [DB]= 6√22
    III) [DB]= 3x
    3x= 6√22
    x= 2√22

    x²= 2²*22
    x²= 88
    Agreen= 88 square units ✅

  • @rey-dq3nx
    @rey-dq3nx 15 днів тому

    AF=FC
    3√ 22=3x/2
    x=2√22
    x²=88

  • @JSSTyger
    @JSSTyger 14 днів тому

    8(99)/9 = 88

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 14 днів тому

    STEEP-BY-STEP RESOLUTION PROPOSAL :
    01) If Square [AEFG] = 99 sq cm ; Then : AE = AG = EF = FG = 3sqrt(11) cm
    02) Square [ABCD] = (4 * 99) sq cm = 396 sq cm. Sides : AB = AD = CD = BC = sqrt(396) = 6sqrt(11) cm
    03) Square Diagonal = BD = Side * sqrt(2) ; BD = 6sqrt(11) * sqrt(2) ; BD = 6sqr(22) cm
    04) We can easy demonstrate by means of Algebra that : DH = HM = MB = X. I am not going to spare my time here in Routine Calculations.
    05) BD / 3 = 2sqrt(22) cm
    06) X = 2sqrt(22) cm
    07) X^2 = (4 * 22) sq cm ; X^2 = 88 sq cm
    OUR BEST ANSWER :
    Green Square Area equal 88 Square Centimeters.

  • @dustinhigh9035
    @dustinhigh9035 15 днів тому

    99

  • @prossvay8744
    @prossvay8744 15 днів тому

    Green area=88cm^2

  • @wasimahmad-t6c
    @wasimahmad-t6c 15 днів тому

    Saim 99

  • @wasimahmad-t6c
    @wasimahmad-t6c 15 днів тому

    88 100% raite

  • @wackojacko3962
    @wackojacko3962 15 днів тому

    I've got the Halloween blues and am trapped in a parallel universe far, far away trying too convince myself that ghosts don't exist. The only way back is too keep studying the concepts of Euclid and figure out how to work the useless Set Square and navigate back home. Wish me luck! 🙂

    • @santiagoarosam430
      @santiagoarosam430 15 днів тому +1

      Que los vientos te sean favorables y que cuando llegues a casa, Argos te reconozca.

  • @misterenter-iz7rz
    @misterenter-iz7rz 15 днів тому

    79.2。99×(4/5)=79.2.😊

    • @Slimmo_09
      @Slimmo_09 12 днів тому

      That's not like you to make such a mistake. Your fraction should be 4/4.5.