Bayes' Theorem / Law , Part 1

Поділитися
Вставка
  • Опубліковано 22 гру 2024

КОМЕНТАРІ • 113

  • @NoFantasy
    @NoFantasy 8 років тому +16

    It's so nice to know that there are still people out there who knows how to speak Modem.

    •  7 років тому

      hahahahahahahahahaha so mean!

  • @ALU416
    @ALU416 10 років тому +93

    What is up with the random annoying sound?

    • @canadianthroneholder
      @canadianthroneholder 10 років тому

      im not the only one hearing a beep sound in the back?

    • @marcelovital579
      @marcelovital579 10 років тому +15

      damn i thought i was tripping balls hahahaha

    • @canadianthroneholder
      @canadianthroneholder 10 років тому +2

      Marcelo Vital i thought id have to buy new speakers

    • @JKennedyy94
      @JKennedyy94 10 років тому +8

      Wow now you tell me I just went and bought a new laptop

    • @soliderarmatang5664
      @soliderarmatang5664 9 років тому

      Andy Lu the video was farting XD,

  • @michaelcowan1761
    @michaelcowan1761 7 років тому +17

    Probability makes me cry.

  • @JerelAlicdanINC
    @JerelAlicdanINC 9 років тому +50

    He's actually a robot and the beeping is him slipping into his real voice

    • @riteshtheunknown
      @riteshtheunknown 8 років тому +2

      +Jerel Alicdan or maybe he was on Mars when he did that video

  • @Human_Evolution-
    @Human_Evolution- 7 років тому +6

    What's the difference between Bayes' theorem and conditional probability?

  • @SergioSoares91
    @SergioSoares91 9 років тому +4

    Thanks! It helped me a lot. Your way to organize the probabilities in a tree really helps understanding!

  • @XJenniferLeighX
    @XJenniferLeighX 12 років тому +1

    Taking my first upper level statistics class this spring semester and I'm trying to get a head start- your videos were so helpful with calc1, 2 and 3!

  • @PhilippWerminghausen
    @PhilippWerminghausen 11 років тому +1

    more like we love you. Thanks for all the help, wouldn't pass my classes without you.

  • @karenfeng5028
    @karenfeng5028 11 років тому +1

    for finding the probability of selecting a red coin: instead of doing the branches and all those calculations, can't you just add up all the red coins and divide it by the total number of coins? since the summation of probabilities are 1. or do we need to show all the calculations cause we need to define the bayes theorem?

  • @GoldPhoenix99
    @GoldPhoenix99 10 років тому +31

    Holy crap man, what is up with that beeping? This seems like a really well explained video (of a subject not often clearly explained), but that beeping is making my skin crawl. It's like nature doesn't want me to know this theorem. =P

  • @patrickjmt
    @patrickjmt  12 років тому +2

    I love Bayes' Theorem

    • @kietpham4635
      @kietpham4635 11 місяців тому

      I love it too, but i forget it easily 🥲

  • @TheOneFromNone
    @TheOneFromNone 8 років тому

    Oh, the excitement of seeing patrickJMT has done a video on something you're studying

  • @kaip8551
    @kaip8551 9 років тому +11

    I find the beeping rather soothing.

  • @wolfgangi
    @wolfgangi 6 років тому

    so is Bayes' Theorem basically the reverse of conditional probability ? So normally the type of question for conditional probability would start with something like what is the chance of B given A has happened VS Bayes' Theorem where the question is Given A has happened what is the chance of B ?

  • @raching854
    @raching854 10 років тому

    You're ten times better at teaching than my college professor. Thank you

  • @sravanipvn
    @sravanipvn 6 років тому

    You don't know how much you helped me!!! Loads of love ......Sravani

  • @nickold4499
    @nickold4499 8 років тому

    Did you calculate the probabilities of selecting a bowl or was that given? Because my problem doesn't give me those probabilities, but it's still asking the same question. Any help?

  • @akanshapandey2378
    @akanshapandey2378 9 років тому

    In bayes theorm if I know the value of p(symptoms/disease) let's 0.3 so,can I take p(~ymtm/dise)= p(ymtm/~dise) = (1-p(symtm/dis))?

  • @n8mare28cj
    @n8mare28cj 12 років тому

    How did you calculate the probability of getting the bowl?

  • @katiemdodd
    @katiemdodd 11 років тому

    patrick... if I pass my calc class, it's all due to you. thanks for making these videos.

  • @mattt1994
    @mattt1994 11 років тому

    I was nervous about my intro to statistics class but then I realized your channel has statistics videos :p

  • @tonykimuku3289
    @tonykimuku3289 10 років тому

    i have a question about this topic where kan i get an assistance

  • @rushadrazib4239
    @rushadrazib4239 5 років тому +1

    Whats the probability of hitting my head on a wall given that I want to hit my head on a wall? Good explaining anyways thanks man but I am being forced to learn this given that I am aware that its going to kill me.

  • @promachos
    @promachos 7 років тому

    Why do you even need to multiply by the chance that the bag was selected. To find the chance of drawing red wouldnt you just divide the total amounts of reds by the total amount of coins ? the answer comes to the same value ?

  • @moustafasamir2317
    @moustafasamir2317 9 років тому

    what is the difference between Bayes' theorem and conditional probability "P(A/B) = P(AB)/P(B)"??

    • @marcod6653
      @marcod6653 8 років тому

      +moustafa samir Bayes theorem put in relation P(A|B) and P(B|A). Conditional probability considers
      P(A^B) = P(A) * P(B|A). Bayes forward step is that also P(B) * P(A|B) = P(A^B). So P(A^B) = P(A^B), and of course
      P(A)*P(B|A) = P(B)*P(A|B).

    • @moustafasamir2317
      @moustafasamir2317 8 років тому

      thanks Marco D :)

  • @sergioavila2720
    @sergioavila2720 8 років тому +1

    is this the same as conditional probability?

  • @theretrogamer14
    @theretrogamer14 9 років тому

    What about sigma and i and k in Bayes' theorum?

  • @karnabudhathoki6289
    @karnabudhathoki6289 8 років тому

    I wonder why the probability of selecting Bowl1, Bowl2 and Bowl3 is not1/3 for each bowl.I think selecting red ball from Bowl1,Bowl2 and Bowl3 is 1/3, 1/6 and 1/2 respectively should be the right interpretation.....Correct me if I am wrong....

  • @henk-ottolimburg7947
    @henk-ottolimburg7947 11 років тому +3

    every coin has an equal chance to be taken. (since the 1/3-1/6-1/2-ratio reflects the number of coins. There are 8 red coins in a total of 18. Therefore, P(R) = 8/18 = 4/9 !
    Voila: give you the answer in 8 seconds in stead of 9:29. ;-)

  • @jonf5707
    @jonf5707 8 років тому

    Could you repeat the part about the probability of a given probability about the given bowl of probabilities?

  • @ernestoernesto7217
    @ernestoernesto7217 3 роки тому

    Question, isn't this the Law of Total Probability?

  • @jessecruz6241
    @jessecruz6241 9 років тому

    How do I know that I need to use this?

  • @leonardohernandez9804
    @leonardohernandez9804 7 років тому

    Man I can't thank you enough, you're truly a life saver

  • @seinfan9
    @seinfan9 12 років тому

    I can't believe you're FINALLY doing probability.stuff. I suffered this past semester with very little help.

  • @Hereson
    @Hereson 11 років тому

    Just like you love Bayes's Theorem, I love your explanations!

  • @videogamejo
    @videogamejo 11 років тому

    Love this channel. My math teacher sucks and my books sucks. Your vids are extremely helpful

  • @jxcxtxl
    @jxcxtxl 12 років тому

    Perfect! this just came out when i needed it! :D

  • @tinkerbell716
    @tinkerbell716 11 років тому +2

    "Part Bay" LOL Bayes' theorem getting to your head now xD

  • @50SHEVUS
    @50SHEVUS 11 років тому

    I've been watching your videoa over & over. you explain the processes very well. wish i cud borrow ur brain for my exam next week.

  • @sphengle
    @sphengle 11 років тому

    Excellent intro to Bayes Theorem. I now understand it! Thanks.

  • @FoldingCrown
    @FoldingCrown 9 років тому +29

    Beep, boop.

  • @michalchik
    @michalchik 12 років тому

    No the repetition in audio and visual format with both unfolding is good didactic technique.

  • @ML-vb5hc
    @ML-vb5hc 11 років тому

    you are so good at explaining!! i understand bayes theorem now! :D :D :D

  • @ShivamPhysics1
    @ShivamPhysics1 9 років тому +1

    funny beeps in between made me laugh every time it beeped...what a beeeeeeep!

  • @26goldnugge
    @26goldnugge 6 років тому

    What does P(B)? How did he get P(B1) = 1/3?

  • @rafaelperez3069
    @rafaelperez3069 10 років тому +1

    Patrcik thanks alot dude! You are always saving me with my hw :)

  • @MiguelGonzalez-kp7hq
    @MiguelGonzalez-kp7hq 9 років тому

    I LOVE U SO MUCH @patrickJMT

  • @alifaizan7877
    @alifaizan7877 6 років тому

    Your writing is beautiful !

  • @Andr295
    @Andr295 11 років тому

    It doesn't make sense to me that there's such a big probability os selecting the red coin from the first bowl since there's that much more probabiliy of drawing a coin fron the third bowl AND on top there's over a half probability of selecting a red coin out of that third bowl. It might be just me, but IT'S just don't see it.

  • @SaniyaShoeb
    @SaniyaShoeb 9 років тому

    you. are. AMAZING!
    finally something that matches to Khan Academy!

  • @iLoveTurtlesHaha
    @iLoveTurtlesHaha 7 років тому

    Oh Patrick, you're now my new BAYE ... XD

  • @Sarelzayeth
    @Sarelzayeth 12 років тому +1

    I love it but my first Undergrad Stats Exam on Wednesday is going to be the end of me.

  • @milesdavidsmith
    @milesdavidsmith 8 років тому

    You use a lot of sharpie. Hopefully your work space is well ventilated!

  • @labyrinthstreaming4175
    @labyrinthstreaming4175 7 років тому

    I don't hear a beeping

  • @thoranevans4832
    @thoranevans4832 4 роки тому

    One thing though, this isn't Bayes' Theorem, this is the law of total probability.

  • @kwanelezondi1483
    @kwanelezondi1483 10 років тому

    The beeping sound is really messing my concentration.

  • @msrrautela
    @msrrautela 10 років тому

    what a great explanation..You rock!

  • @Titan360
    @Titan360 11 років тому

    ....my god.
    I finally know what | means in equations.
    I seriously think I'm going to cry.

  • @ToothbrushGuy
    @ToothbrushGuy 10 років тому +4

    patrickJMT for president!

  • @shubham97singh
    @shubham97singh 9 років тому +3

    edit this video and remove annoying beep sound

  • @TheRoxas13th
    @TheRoxas13th 11 років тому

    Nice, this is what i looking for :D Thanks for sharing this knowledge sir XD
    But i'm still confuse what bayes theorem is. Can anyone explain it further for me?

    • @wreynolds1995
      @wreynolds1995 10 років тому

      Bayes' Theorem is the equation at the beginning of the video, where the symbols have the meanings that Patrick explains of them.
      I realise this is a bit late, but hopefully this comment will help others.

  • @ykajee1
    @ykajee1 8 років тому +1

    Seriously though R2-D2's commentary made this very hard to listen to. Seems like exactly what i need but its also giving me a headache

  • @ashhook4106
    @ashhook4106 7 років тому

    The probability of selecting the bowls don't add up to 1

  • @mattmarkham4734
    @mattmarkham4734 11 років тому

    you make a video then

  • @saithiha525
    @saithiha525 12 років тому

    it is very helpful for me. thank you very much.

  • @Khan_O
    @Khan_O 8 років тому +2

    Why dont you just add the red balls and divide them by the total balls? You get the same answer.

    • @Khan_O
      @Khan_O 8 років тому

      Sastay.

    • @Entropy3ko
      @Entropy3ko 8 років тому

      I was thinking the same... Yes that is the easy way, of course, which works too.
      BUT: one method is more useful than the other to understand Bayes theorem.
      You can calculate the probability in two ways here... a "global way", that just looks at the coins (and ignore where they come from), which indeed makes the easy calculation P(R) = #Red coins / #(Red + Blue) Coins
      Still this must also be equal ;(obviously) to the sum of each probability to draw a red coin from a particular bowl.
      The second method is more laborious, but shows the various probabilities in detail and allows us to draw a probability tree.
      Although it's (at least in this example) which method you use, the second one with the probability tree is more useful to understand Bayes theorem.

  • @saurabh.mehta32
    @saurabh.mehta32 10 років тому

    awesum....probabilty had never been this easy... :-)

  • @niloufar2043
    @niloufar2043 11 років тому

    Thanks It was very clear explanation

  • @eschooling1615
    @eschooling1615 9 років тому

    awesome! nice vid

  • @hemantikanath838
    @hemantikanath838 7 років тому

    That tree made my life soo simple🤓

  • @kavyaravindranath5206
    @kavyaravindranath5206 7 років тому

    Thanks a ton!

  • @fled143
    @fled143 10 років тому

    Thanks a lot.

  • @rehabzaidalzahrani1976
    @rehabzaidalzahrani1976 8 років тому +1

    can you be my teacher please

  • @itsmimohere
    @itsmimohere 10 років тому

    You're just awesome :D

  • @brunonogueira417
    @brunonogueira417 10 років тому

    helped alot. thanks keep up the good work.
    From Portugal

  • @gerardgeer642
    @gerardgeer642 10 років тому +1

    That beeping is awful.

  • @stevenbockarie4669
    @stevenbockarie4669 7 років тому

    Great.

  • @rogerdavies681
    @rogerdavies681 8 років тому

    Please invest in a decent microphone!

  • @NNK1224
    @NNK1224 11 років тому

    That was Given

  • @vineethreddy.s
    @vineethreddy.s 7 років тому

    ☺️

  • @ubaidurrehman4377
    @ubaidurrehman4377 7 років тому

    great

  • @michaellam1548
    @michaellam1548 8 років тому

    Can't watch the video with this beeping sound...

    • @patrickjmt
      @patrickjmt  8 років тому +10

      +Michael Lam BEEEEEEEEEEEP

  • @MCSGproject
    @MCSGproject 7 років тому

    thank fucking god

  • @Soph1k99
    @Soph1k99 7 років тому +1

    LOL part bae

  • @tinkerbell716
    @tinkerbell716 11 років тому

    Btw, you are so fucking helpful!

  • @bryceo5628
    @bryceo5628 7 років тому +1

    Yo dude dont use sharpie all the time that is poison

  • @TranceJams
    @TranceJams 11 років тому +1

    Part Baye haha

  • @shadybaby5309
    @shadybaby5309 8 років тому

    Beep beep

  • @mysterious34567
    @mysterious34567 10 років тому

    wow :)

  • @AurimasBarkauskas
    @AurimasBarkauskas 12 років тому

    Dude, have some stuff prepared. You are writing stuff you have already explained most of the time.

  • @Ayplus
    @Ayplus 12 років тому

    *eh* I've encountered better theorems