A Nice Radical Math Problem | Can You Solve This?

Поділитися
Вставка
  • Опубліковано 29 січ 2025

КОМЕНТАРІ • 8

  • @Shobhamaths
    @Shobhamaths 2 дні тому

    a+2b=17;
    a+b√5=161+(-72√5)
    If u simplify by rationalizing
    x=(√5-1) /2
    x^12=161-72√5

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 15 годин тому

    Let N=sqrt(45)+sqrt(49)
    =7+3sqrt(5)
    D=sqrt(125)+sqrr(121)
    =11+5sqrt(5)
    LHS=(N/D)¹² Note that 125-121=2²
    Let C=11+5sqrt(5)
    Multiply N/D by C/C:
    NC/DC=¼[7+3sqt(5)][11-5sqrt(5)]
    =¼[2-2sqrt(5)]
    =½[1-sqrt(5)]
    =-1/ß where ß=golden ratio
    Thus LHS=-1/ß²⁴ and ß²⁴ can be easily get using Fibonacci

  • @RashmiRay-c1y
    @RashmiRay-c1y 2 дні тому

    Let x=[√45 + √49]/[√125 + √121] = 1/2(√5-1). Thus, x^2=1-x. Hence, x^12 = 89-144x=161-72√5. So a=161 and b=-72. Thus, a+2b = 17.

  • @akhildhawan5728
    @akhildhawan5728 2 дні тому

    17

  • @SidneiMV
    @SidneiMV 2 дні тому +1

    (3√5 + 7)/(5√5 + 11)
    = (3√5 + 7)(5√5 - 11)/4
    = (75 - 33√5 + 35√5 - 77)/4
    = (2√5 - 2)/4 = (√5 - 1)/2
    [(√5 - 1)/2]¹² = a + b√5
    x = (√5 - 1)/2 => a + b√5 = x¹²
    x² = (3 - √5)/2
    x² + x = 1 => x² = 1 - x
    x³ = x - x² = x - (1 - x) => x³ = 2x - 1
    x⁶ = 4x² - 4x + 1 = 4(1 - x) - 4x + 1
    x⁶ = 5 - 8x
    x¹² = 64x² - 80x + 25 = 64(1 - x) - 80x + 25
    x¹² = 89 - 144x = 89 - 144(√5 - 1)/2
    x¹² = a + b√5 = 161 - 72√5
    a + 2b = 161 - 144 => a + 2b = 17

  • @Fjfurufjdfjd
    @Fjfurufjdfjd 2 дні тому

    17

  • @ilhammaharramov9927
    @ilhammaharramov9927 2 дні тому

    17