Compositions of linear transformations 2 | Matrix transformations | Linear Algebra | Khan Academy

Поділитися
Вставка
  • Опубліковано 18 січ 2025
  • Courses on Khan Academy are always 100% free. Start practicing-and saving your progress-now: www.khanacadem...
    Providing the motivation for definition of matrix products
    Watch the next lesson: www.khanacadem...
    Missed the previous lesson?
    www.khanacadem...
    Linear Algebra on Khan Academy: Have you ever wondered what the difference is between speed and velocity? Ever try to visualize in four dimensions or six or seven? Linear algebra describes things in two dimensions, but many of the concepts can be extended into three, four or more. Linear algebra implies two dimensional reasoning, however, the concepts covered in linear algebra provide the basis for multi-dimensional representations of mathematical reasoning. Matrices, vectors, vector spaces, transformations, eigenvectors/values all help us to visualize and understand multi dimensional concepts. This is an advanced course normally taken by science or engineering majors after taking at least two semesters of calculus (although calculus really isn't a prereq) so don't confuse this with regular high school algebra.
    About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content.
    For free. For everyone. Forever. #YouCanLearnAnything
    Subscribe to KhanAcademy’s Linear Algebra channel:: / channel
    Subscribe to KhanAcademy: www.youtube.co...

КОМЕНТАРІ • 13

  • @blackphoenix1207
    @blackphoenix1207 14 років тому +1

    Thank you for all of the linear Algebra videos!!!!!

  • @Estinox
    @Estinox 15 років тому +1

    Thanks so much Sal!!! This video directly correlates to what my assignments are on. Tytyty!

  • @jonathanjordan21
    @jonathanjordan21 2 роки тому +1

    7:47
    Typo detected!
    Matrix A order is m x n

  • @junecnol79
    @junecnol79 5 років тому +1

    thanks for excellent tutorials. 13:28 i think it should be "Rm" not "Rn"

    • @jaywu4956
      @jaywu4956 4 роки тому

      yes that's correct

  • @TazGGGUNOT
    @TazGGGUNOT 13 років тому

    Thanks a lot for your effort Sal. Greetings from Sweden!

  • @uisucho5881
    @uisucho5881 4 роки тому

    14:52 헷갈렸던것

  • @geekionizado
    @geekionizado 11 років тому

    Where did you find this??? Wow :)

  • @DerMigi
    @DerMigi 5 років тому +1

    I love you man

  • @alirezagholami1946
    @alirezagholami1946 11 років тому

    excellent

  • @yustinayasin5539
    @yustinayasin5539 4 роки тому

    12:46 why he multiple B(Ax) with x vector again?

    • @jonathanjordan21
      @jonathanjordan21 2 роки тому +2

      the first multiplication by Identity Matrix was for the entire span of R^n which basis are the Identity Vectors.
      Naturally, Matrix A(m x n) times Identity Matrix(n x n) is Matrix A(m x n)
      The video just put the vectors of matrix A (columns of matrix A) onto the columns of matrix C with a multiplication of matrix B on each column.
      again, Matrix multiplication of a vector is a linear transformation. That means matrix B transforms each vector of matrix A and then matrix A transforms the vector x.
      Matrix multiplication is associative, it doesn't matter which one gets multiplicated first