In-depth explanation! | Find Radius of the circle? | (Circle inscribed in a triangle) |

Поділитися
Вставка
  • Опубліковано 8 січ 2025

КОМЕНТАРІ •

  • @aminex3519
    @aminex3519 Рік тому +6

    I like your videos

  • @georgebliss964
    @georgebliss964 Рік тому +12

    Triangle BOC.
    Corner angles at B and C are 37.5 & 30 degrees respectively.
    Angle BOC = 180 - 37.5 - 30 = 112.5 degrees.
    2 / sin 112.5 = OC / sin 37.5.
    OC = 2 sin 37.5 / sin 112.5 = 1.318.
    Triangle OFC.
    Sin 30 = OF / 1.318.
    0.5 = OF / 1.318.
    OF = 0.659.= radius.

  • @jimlocke9320
    @jimlocke9320 Рік тому +2

    We note that

  • @ОльгаСоломашенко-ь6ы

    According to the sine theorem, the sides of a triangle can be found. sin(75)=sin(30+45)=sin(30)*cos(45)+ cos(30)*sin(45). r=2*S/(a+b+c). I don't like additional constructions.

  • @raymondruiz5839
    @raymondruiz5839 Рік тому +3

    I taught and was taught that the legs made the right angle. What you called the Longest LEG should be called the HYPOTENUSE ( or longest side)

    • @PreMath
      @PreMath  Рік тому

      In the right triangle, the longest leg is called the HYPOTENUSE! Thanks ❤️

  • @soli9mana-soli4953
    @soli9mana-soli4953 Рік тому

    Once known the 3 sides in some way (I used sines law) and knowing that the center of the circle is the point of intersection of all the bisectors, considering the bisector of angle in C we get COF and COD right triangle of 30,60,90 so
    CF = DC = r√ 3 (for two tangent theorem)
    BF = BE = 2 - r√ 3
    AE = AD = √ 6 - 2 + r√ 3
    AC = AD + DC = 1 + √ 3
    √ 6 - 2 + r√ 3 + r√ 3 = 1 + √ 3
    r = (1 - √ 2 + √ 3)/2

  • @Alishbafamilyvlogs-bm4ip
    @Alishbafamilyvlogs-bm4ip Рік тому +4

    Nice sharing my Allah bless you❤❤ stay connected🎉

    • @PreMath
      @PreMath  Рік тому +1

      Thank you, I will 🌹

  • @SushmaGupta-tp5xw
    @SushmaGupta-tp5xw Рік тому +2

    Amazing explanation
    I know that you will get millions of subscribers very soon keep it up

    • @PreMath
      @PreMath  Рік тому

      Thank you so much dear 😀❤️

  • @moonlight6094
    @moonlight6094 9 місяців тому

    Thank you for your explanation

  • @MrPaulc222
    @MrPaulc222 Рік тому +2

    I didn't get close with this one. I started out wrong and it never got better. I will have to go through your video very slowly to seek understanding. Thank you.

    • @PreMath
      @PreMath  Рік тому +1

      You can do it!
      Thanks ❤️

  • @ARichli
    @ARichli Рік тому +1

    BF=r/tan30º, CF=r/tan37.5º, BF+CF=2 => r=2 .tan30º.tan37.5º/(tan30º+tan37.5º) = 0.658918622...
    The "special triangles" are trigonometry in disguise, so why not go to the fullest?

  • @Reddogovereasy
    @Reddogovereasy Рік тому +1

    I want to thank you for the time it took to create this very interesting problem.

    • @PreMath
      @PreMath  Рік тому

      Many many thanks ❤️🌹

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l Рік тому +1

    Very nice sharing Sar❤❤❤❤❤

  • @robertlynch7520
    @robertlynch7520 9 місяців тому

    I really DO appreciate the full geometric-and-special-triangles approach. There's elegance to it.
    However, as I can see others have concluded … why all the work? We're in a world of calculators and simple trigonometric relationships … using them directly delivers "the goods" without much complication.
    Dividing the top angle in 2 yields two 30-60-90 triangles up there, fully symmetric and similar. The "right leg" is √(3)R plain and simple. Likewise, dividing the bottom-right triangle in half yields another pair of similar triangles, the right leg of which has length R/(tan 37½°).
    And the given is that the whole right leg is 2 units long.
    So,
    [1.1]  √(3)R + R/(tan 37½°) = 2 … factor out the common R
    [1.2]  R( √3 ⊕ 1/(tan 37½°) ) = 2 … and divide by te () stuff to cancel
    [1.3]  R = 2 / ( √3 ⊕ 1/(tan 37½°) ) … which my calculator says
    [1.4]  R = 0.65892
    Now, was that SO hard? Not really!!!
    ⋅-⋅-⋅ Just saying, ⋅-⋅-⋅
    ⋅-=≡ GoatGuy ✓ ≡=-⋅

  • @RushikeshRaut......-126
    @RushikeshRaut......-126 Рік тому +2

    HOW TO DEVELOP CRITICAL THINKING SKILLS IN MATHEMATICS

    • @PreMath
      @PreMath  Рік тому +2

      Practice and perseverance!
      Just keep watching ...
      Thanks ❤️

  • @wackojacko3962
    @wackojacko3962 Рік тому +2

    Dog barking @ 4:33 is as excited as I was with this problem. I mean I love all the math!...identities...rationalizing...ect. 🙂

    • @PreMath
      @PreMath  Рік тому +1

      Great observation! My neighbor's dogs. I guess they like math as well. 😀
      Thanks ❤️

  • @j.r.1210
    @j.r.1210 Рік тому

    What a strange problem! Just the process of rationalizing the fractional solution took as long as solving some entire problems on this channel. And the final answer is still ungainly. :)

  • @harshnambiar
    @harshnambiar 11 місяців тому

    Since the circle is the incircle of the triangle, OBC and OCB are angle bisectors. So can't we just say that BF = rcot37.5 and CF = rcot30?

  • @OrenLikes
    @OrenLikes 11 місяців тому

    Looooong, but Nice!
    "Luckily" 75=30+45... I missed that, so,
    I used Adj=Opp/Tan for triangles OFB & OFC with half angles 37.5 & 30 (because lines from outer point to circle are equal, creating similar equal triangles because of the radiuses (I prefer "radiuses"), and so, split the angle). r=OF.
    The sum of FB=r/Tan(37.5) & FC=r/Tan(30) is BC=2, so: r=2Tan(37.5)Tan(30)/(Tan(37.5)+Tan(30))~0.6590 as your solution (0.66).

  • @holyshit922
    @holyshit922 Рік тому

    Missing angle measure from sum of angles in triangle
    Missing side lengths from sine law
    By comparing two formulas for area one with sine and second with radius of inscribed circle

  • @marcgriselhubert3915
    @marcgriselhubert3915 Рік тому

    *In triangle OFC we have: FC = R. cotan (30°) = R. sqrt (3).
    In triangle OBF we have: FB = R. cotan (37.5°)
    So: 2 = BC = FC + FB = R (sqrt(3) + cotan (37.5°)), so R = 2 / (sqrt (3) + cotan (37.5°)).
    *Now let's calculate cotan (37.5°)
    cotan (75°) = cotan (90° - 15°) = tan (15°) = 2 - sqrt (3). (I presume this value is know, unless it is easy to obtain from tan (30°) and the formula giving tan (2x).)
    Now, we use the formula cotan (2x) = ((cotan (x))^2 - 1) / 2. cotan (x)
    If x is cotan (37.5°) then we have: 2 - sqrt (3) = (x^2 - 1) / x. This is a second degree equation: x^2 - 2 (2 - sqrt (3)) x + 1 = 0
    delta ' = (2 + sqrt (3))^2 + 1 = 8 + 4 sqrt (3) = (sqrt (6) - sqrt (2))^2
    So: x = 2 - sqrt (3) + sqrt (6) - sqrt (2) = cotan (37.5°), the other solution beeing negative .
    *We come back to R. R = 2 / (2 + sqrt 6) - sqrt (2)). We rationalize the denominator (easy but fastidious to write here with the computer).
    Finally we obtain: R = (1 - sqrt (2) + sqrt (3)) / 2.

  • @prossvay8744
    @prossvay8744 Рік тому

    Connect OC ; OD; OF
    Let r is radius
    BF=a; CF=2-a
    tan(30)=OF/CF
    √3/3=r/2-a
    √3(2-a)=3r
    r==√3(2-a)/3
    tan(75/2)=r/a
    0.767=r/a
    r=0.767a
    0.767a=√3(2-a)/3
    a=0.86
    So: r=(0.86)(0.767)=0.66 units. Thanks ❤❤❤

  • @henrymei4565
    @henrymei4565 Рік тому +2

    why don't you use the law of sin and 30.60.90 special triangle to find the radius? your way is very complicated.

  • @ВерцинГеториг-ч5ь

    Вы не знаете простой , широко распространенной формулы в геометрии для вписанной окружности ? ДС=(АС+СВ-АВ)/2 = (\/3+1+2-\/6)/2 = (\/3 - \/6 + 3)/2 . Из прямоугольного треугольника ДСО - r/ДС = tg 30* (tg 30* = \|3/3) . r = ДС х tg 30* = (\/3 -\/6 + 3)/2 х \/3/3 = (3 - \/2х3х3 +3\/3)/2х3 = 3(1 -\/2 +\/3)/2х3 = (1-\/2+\/3)/2 .
    Теперь понимаю почему на Западе преподают простые вещи , доступные пониманию каждому среднему человеку , так сложно . Формула , которую привел , выводится элементарно простым школьником , обладающим средним умом , прошедшим школьную программу . Теперь и у нас правит олигархат , которым нужны необразованные , забитые люди - слепо их или их ставленников выбирать и работать на них за мизерную зарплату .

  • @kengutr
    @kengutr Рік тому

    Sanırım 10:56 dan sonrası çok da gerekli değil! Çünkü o noktada da ondalık hesap yapılabilirdi.

  • @jedistu5323
    @jedistu5323 Рік тому +3

    Too complicated for me, although I did follow the workings too the end
    Can't help thinking that I'd probably have more success helping NASA fix their current Voyager software glitch!
    😊

    • @PreMath
      @PreMath  Рік тому

      😀
      Thanks ❤️

    • @wes9627
      @wes9627 Рік тому

      Never stop trying. It wards off dementia.

  • @DugRut
    @DugRut 9 місяців тому

    as clear as the Mississippi river

  • @wes9627
    @wes9627 Рік тому

    tan37.5°=R/BF; tan30°=R/CF; BF+CF=2=R(1/tan37.5°+1/tan30°)
    R=2/(1/tan37.5°+1/tan30°)=0.6589...

  • @robertlynch7520
    @robertlynch7520 10 місяців тому

    Wow! I found an answer a completely different way, that also was somewhat shorter.
    First (key) is to recognize that a circle having tangents that intersect at some angle θ, bisects θ into two equal angles ½θ apiece.
    Thus ∠60° at the top is bisected into 30° + 30° by a line drawn thru the circle's midpoint. Likewise, using a radius from centerpoint to the tangent point of BC, we develop an upper triangle which is 30°-60°-90°. Further again, the line thru the center of the circle to base must also have a 75°∠ at the lower left.
    Here is the cool induction step:
    The line thru center to base must be the same length as the [2] given for BC because its an Isosceles triangle. Armed with that, then it is composed of the upper hypotenuse which must be 2𝒓 (30-60-90△, 1-√(3)-2 ratios), and the lower segment we'll call 𝒒
      𝒒 = 𝒓 / sin 75°
    Because from center point to base is [𝒓] radius. The isosceles extension is 𝒒. So we then just add 'em together
      𝒒 ⊕ 2𝒓 = 2 … substitute in
      𝒓 / sin 75° ⊕ 2𝒓 = 2 … move stuff around
      𝒓 = 2 / (1 / sin 75° ⊕ 2)
      𝒓 = 0.65892
    Which is ≈ to 0.66, matching our good math professor.
    Thanks again.
    ⋅-⋅-⋅ Just saying, ⋅-⋅-⋅
    ⋅-=≡ GoatGuy ✓ ≡=-⋅

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому +2

    Col teorema dei seni calcolo i 2 lati mancanti..poi r=S/p,p semiperimetro...r=(3+√3)/(3+√3+√6)=0,6589...sempre siano i calcoli corretti

  • @calototube
    @calototube 9 місяців тому

    ¡La hostia! 😳

  • @umutkargili3617
    @umutkargili3617 Рік тому

    Phew!

  • @aminex3519
    @aminex3519 Рік тому

    Pin me pls I'm the 🥇