% Section 1: Input clc; format long; disp('Newton-Raphson Method for Root Finding'); FSrt = input('Enter the function F(x) as a string: ', 's'); % Convert the string function into a symbolic function F = str2sym(FSrt); % derivative of the function dF = diff(F, 'x'); % Convert both the original function and derivative to MATLAB functions Fcn = matlabFunction(F); dFcn = matlabFunction(dF); % Section 2: Initial guess and convergence criteria xj = input('Enter the first approximation to the root (xj): '); crt = input('Enter the convergence criteria: '); % Initial number of iterations iteration = 0; % Section 3: Newton-Raphson Loop while abs(Fcn(xj)) > crt xj = xj - Fcn(xj) / dFcn(xj); % Display current iteration fprintf('Iteration %d: x = %f, F(x) = %f ', iteration, xj, Fcn(xj)); % Increment iteration count iteration = iteration + 1; end % Output final result fprintf('The function %s has root %.5f with accuracy %.6f after %d iterations. ', FSrt, xj, crt, iteration); % Section 4: Plot the function and root x_values = linspace(xj-5, xj+5, 201); y_values = Fcn(x_values); % Plot the function and the root plot(x_values, y_values, 'b-', xj, Fcn(xj), 'ro'); xlabel('x'); ylabel('F(x)'); title('Newton-Raphson Method'); grid on;
syms x; FSrt=input("Enter the function as a string: ",'s'); F(x)=str2sym(FSrt);% convert into a string Fnc=matlabFunction(F(x));% matlab function % Enter the x1;x2; convergence criteriaand maximum iteration x1=input('Enter the first approximation of the root: '); x2=input("Enter the second approximation of the root: "); crt=input("Enter the convergange criteria: "); max_iter=input("Enter the max iter of the root: "); %Initial values iter=1; xPrev=x1;% Previous x-value xCur=x2;% Current x-value while abs(Fnc(xCur))> crt && iter
Satt shri akal❤
how do you apply this for f(x)=×-tan(x)
Can you give a example of find the roots using remainder theorem using in MATLAB
% Section 1: Input
clc;
format long;
disp('Newton-Raphson Method for Root Finding');
FSrt = input('Enter the function F(x) as a string: ', 's');
% Convert the string function into a symbolic function
F = str2sym(FSrt);
% derivative of the function
dF = diff(F, 'x');
% Convert both the original function and derivative to MATLAB functions
Fcn = matlabFunction(F);
dFcn = matlabFunction(dF);
% Section 2: Initial guess and convergence criteria
xj = input('Enter the first approximation to the root (xj): ');
crt = input('Enter the convergence criteria: ');
% Initial number of iterations
iteration = 0;
% Section 3: Newton-Raphson Loop
while abs(Fcn(xj)) > crt
xj = xj - Fcn(xj) / dFcn(xj);
% Display current iteration
fprintf('Iteration %d: x = %f, F(x) = %f
', iteration, xj, Fcn(xj));
% Increment iteration count
iteration = iteration + 1;
end
% Output final result
fprintf('The function %s has root %.5f with accuracy %.6f after %d iterations.
', FSrt, xj, crt, iteration);
% Section 4: Plot the function and root
x_values = linspace(xj-5, xj+5, 201);
y_values = Fcn(x_values);
% Plot the function and the root
plot(x_values, y_values, 'b-', xj, Fcn(xj), 'ro');
xlabel('x');
ylabel('F(x)');
title('Newton-Raphson Method');
grid on;
how do you obtain more than one roots?
You write a program to do that.
I have numeric analysis exam but I cant doing
same bro
syms x;
FSrt=input("Enter the function as a string: ",'s');
F(x)=str2sym(FSrt);% convert into a string
Fnc=matlabFunction(F(x));% matlab function
% Enter the x1;x2; convergence criteriaand maximum iteration
x1=input('Enter the first approximation of the root: ');
x2=input("Enter the second approximation of the root: ");
crt=input("Enter the convergange criteria: ");
max_iter=input("Enter the max iter of the root: ");
%Initial values
iter=1;
xPrev=x1;% Previous x-value
xCur=x2;% Current x-value
while abs(Fnc(xCur))> crt && iter
Thank you so much!
how tf u make a something that takes 2 seconds to explain a 10 minute video?