Finding the nth Roots of a Complex Number

Поділитися
Вставка
  • Опубліковано 15 гру 2024

КОМЕНТАРІ • 95

  • @bryngoldman7373
    @bryngoldman7373 6 років тому +63

    This is actually the most helpful explanation yet that I've found! Thank you!

  • @TinyMaths
    @TinyMaths 5 років тому +15

    I found myself sitting in the college computer room saying " wow " at how easy you made this understand. I had the background knowledge from my notes and lectures, but you've put it together in such a brilliant way. For example I was confused about why K = { 1,2,3...n-1} , i.e. why it stopped at n-1... it's so clear once you spelled it out. I just took it for granted before without really digging into it. Thank you for making this a whole lot clearer.

  • @simong1666
    @simong1666 3 роки тому +5

    Teach my uni class, this was better than 60min spent lectures

  • @TheLeafyo
    @TheLeafyo 5 років тому +14

    9 minute video from some kid explains it clearer than 90 minute lecture from a well paid lecturer. It's not great when you only attend lectures to gather information on what you need to learn so you can find better material online to teach you.

  • @MultiUsermane
    @MultiUsermane 4 роки тому +1

    My professor's lectures were giving me anxiety because it did not make any sense....this just,..... saved my life. Thank you so much!!!

    • @turksvids
      @turksvids  4 роки тому

      Good deal. Happy to help!

  • @lukabajic3660
    @lukabajic3660 2 роки тому +1

    Bro you are a GOD, omg i didnt understand my teacher about this topic so i searched on yt for explanation, wish you were my teacher i understood u better even if this isnt my native language!

  • @esdrasaguilar5782
    @esdrasaguilar5782 2 роки тому +1

    One question, at 6:53 why do you stop at 2 when writing what k can equal?

    • @turksvids
      @turksvids  2 роки тому

      There are 3 third roots and we get them out of the formula when k = 0, k = 1, and k =2. (Because we use k = 0, we stop at 1 less than n during the process.)

  • @sumeursault
    @sumeursault 2 роки тому +1

    You're fast! The only complex root explanation that I found I wanted to playback at < 1x speed. Usually I want to speed it up (like with Khan Academy)

  • @sabayounus2299
    @sabayounus2299 5 років тому +1

    thank you! this was so helpful! i have a horrible professor, cant believe she couldn't explain something this simple

  • @SoftNyash
    @SoftNyash 3 роки тому +2

    So much grateful..... ive never understood until now

  • @kingsleyaggrey9944
    @kingsleyaggrey9944 2 роки тому

    How did u get theta to be 3pie over4

  • @Aravind_45
    @Aravind_45 3 роки тому +1

    Where are u from

  • @hamsack981
    @hamsack981 3 роки тому

    Holy shit this video helped out so much. I kept putting I in the square root and it was not going the way I wanted. Thank you so much for like a concise and easy explanation

  • @AnupKumar-wk8ed
    @AnupKumar-wk8ed 6 років тому +2

    Very good video. Clearly explained the solution. Thanks.

  • @princekumarmahto896
    @princekumarmahto896 3 роки тому +1

    Really needed this , thank you so much

  •  4 роки тому

    Sir you're a legend!

  • @maryamhafeez2227
    @maryamhafeez2227 3 роки тому

    What if angle is π/6 and z complex number lie in 3rd quad

  • @gatlatwal8499
    @gatlatwal8499 2 роки тому

    Please help me calculate this
    Given that (√3-i) is a square root of the equation Z^9+16(1+i)z^3+a+ib=0
    What is the value of a and b?

  • @amandaliu6571
    @amandaliu6571 4 роки тому +1

    This is nice and concise. Thank you for the video!

  • @niknafidz1570
    @niknafidz1570 4 роки тому +1

    Hello , I want to ask where did we get 2pi over three in the last circle

    • @KirisPlace
      @KirisPlace 3 роки тому

      Since there are 3 roots, there will be three seperate "lines". They will be equally spaced, so 120 degrees apart from each other. In radiants that 2pi/3.

  • @shiveshp.3271
    @shiveshp.3271 4 роки тому +1

    This took a few minutes while i tried for 2 hours using my uni stuff:/ Thank u so much!

  • @enigma_i_am
    @enigma_i_am 6 років тому +2

    Do you have a playlist on just complex numbers ... I’ve been looking through your profile and can’t find one

    • @turksvids
      @turksvids  6 років тому +1

      Playlist: ua-cam.com/play/PL98E8DDDEC4FB2E55.html
      They go with Notes 12 on my website: www.turksmathstuff.com/math-analysis-notes.html
      Hope this helps!

  • @allaamrauf8214
    @allaamrauf8214 5 років тому

    Should θ in the third quadrant not equal "θ(hat) - π"?

    • @turksvids
      @turksvids  5 років тому

      That's one way to get there, sort of a clockwise approach. I prefer to use t + pi, where t is theta hat. if you think it through you can see that t - pi and t + pi are coterminal and differ by one rotation.

  • @brijeshshah1657
    @brijeshshah1657 5 років тому +2

    Thank you. That was really clear and helpful

  • @IbanezV70CE
    @IbanezV70CE 5 років тому

    Why is it that you did not get complex conjugates for your roots? I would have expected one root at an angle of zero and the other two at 120 degrees and 240 degrees. Do I have an incorrect assumption about something?

    • @turksvids
      @turksvids  5 років тому +1

      That will happen when the number you're finding cube roots of is a positive real number because it's angle in polar will be 0 so the angle over 3 is 0, and 360/3 = 120. If the initial complex number isn't on the positive x axis it will have an angle not equal to 0 so the angle over 3 won't give 0 so the cube roots are rotated from the x-axis but still differ by 120 degrees as you rotate between them. Hope this helps!

    • @IbanezV70CE
      @IbanezV70CE 5 років тому

      @@turksvids Thank you for clarifying!

  • @glennrickelton4093
    @glennrickelton4093 6 років тому +2

    Hello. Many thanks for getting back to me by email - and within two hours!. Would it be possible to show how you cube the answer (s) and get back to the original equation? I have tried but am doing something wrong. A video on working back from the nth roots would be great

  • @glennrickelton4093
    @glennrickelton4093 6 років тому +1

    Good explanation. Only thing I am confused on is how to check the answer as some teachers add and square the answer and take the square root to get back to "r" but you said cubing would get back to the original

    • @turksvids
      @turksvids  6 років тому

      In the example I did I found the cube roots so to check the answers I would want to cube what I think the cube roots are and see if I get back to the original complex number: a + bi. I think what you're talking about is finding r, which is--the way I do it--the distance from the complex number to the origin (or the absolute value of the complex number)-- and to find that I'd do sqrt(a^2 + b^2) given a + bi.

  • @addams8967
    @addams8967 2 роки тому

    Great video and explanation. Thank you!

  • @berns0781
    @berns0781 5 років тому

    Is 3rd root the same with 3rd principal of a complex number???

    • @turksvids
      @turksvids  5 років тому

      Can you give an example of what you mean? (I don't think I understand the question.)

  • @sujani3268
    @sujani3268 4 роки тому

    Simple n good explanation!! Thanks.

  • @aadil4236
    @aadil4236 5 років тому

    That did make tone of sense. Thanks

    • @aadil4236
      @aadil4236 5 років тому +1

      That was supposed to be "ton" , my bad.

  • @bayazid314
    @bayazid314 Рік тому

    Thank You. This helped a lot!

  • @MANIMATHSWORLD
    @MANIMATHSWORLD 2 роки тому

    good explaination ......

  • @Materialyprestrojarov
    @Materialyprestrojarov 3 роки тому

    Can I ask...what software do you use to make your notes? I would really like to use it for my videos. Thank you :)

    • @turksvids
      @turksvids  3 роки тому

      Hi! I used an app called Doceri for this video. Here's the site: www.doceri.com/
      I like it and it has a few features I haven't really found in other apps.

  • @theaudjob3267
    @theaudjob3267 4 роки тому

    Great explanation!!!

  • @Vipa567
    @Vipa567 6 років тому

    how is the angle 3pi/2? if you do pi - tan^-1(b/a) I get something different

    • @turksvids
      @turksvids  6 років тому +2

      I just rewatched and didn't see a 3pi/2 in the video. Are you talking about the 2pi/3? That comes from the fact that I'm finding cube roots, so I divide the circle (2pi) into 3 equal sectors, getting 2pi/3 and then the nth roots are separated (by rotation) by that amount.
      The part where you'd use pi-arctan(abs(b/a)) is what should give you 3pi/4. If you're getting that angle, you're doing it right for that part!
      Hope this helps! Is your user name a reference to Malazan Book of the Fallen? Just read the entire series this year. It was pretty great (if a bit long in some spots).

    • @Vipa567
      @Vipa567 6 років тому

      @@turksvids I actually meant 3pi/4, I was doing the calculation wrong and using tan instead of inverse tan. And yeah, name is because of the books

  • @sarojavedantham5112
    @sarojavedantham5112 2 роки тому

    Thank you very clear explanation 🙂👍

  • @bebobaral5812
    @bebobaral5812 6 років тому

    How the values of k are 0 1 2 at last??

    • @turksvids
      @turksvids  6 років тому +1

      I'm not exactly sure what you mean, but if you're finding the nth roots, then you let k go from 0 to n-1. So cube roots has n = 3, so k = 0, 1, 2. If you go one more, to k = 3, you end up with an angle that's coterminal to when k = 0, so it's not a new, unique root.

  • @Alma-ig1km
    @Alma-ig1km 4 роки тому +1

    THANK YOUUU SO MUCHHH🥺🥺
    This is vid is just extremely helpful

  • @sameerakhan9399
    @sameerakhan9399 4 роки тому

    Which software u are using

    • @turksvids
      @turksvids  4 роки тому +1

      Doceri on an iPad with a stylus. There's also a windows app, I'm pretty sure.

    • @sameerakhan9399
      @sameerakhan9399 4 роки тому

      @@turksvids how can I install it?

    • @turksvids
      @turksvids  4 роки тому

      Same as any other app, really. Here's the link: doceri.com/

  • @beverlyfrancis8433
    @beverlyfrancis8433 5 років тому

    Very interesting video.

  • @muzismangaliso3999
    @muzismangaliso3999 6 років тому +1

    can you prove all this law that you are using here ?

    • @turksvids
      @turksvids  6 років тому +2

      It's an extension of DeMoivre's Theorem: en.wikipedia.org/wiki/De_Moivre%27s_formula

  • @wesleynewton5784
    @wesleynewton5784 5 років тому

    Great explanation. Thank you so much.

  • @CB_here
    @CB_here Рік тому

    Good stuff

  • @Nanonear
    @Nanonear 6 років тому +1

    I have no idea why my professor couldn't explain it straight forward, like this. And my books are written by my professor, so no help there. Lol.
    Thanks, man!

  • @sadaqathussain9693
    @sadaqathussain9693 3 роки тому

    You explained it very nicly.
    Thanks

  • @glennrickelton4093
    @glennrickelton4093 6 років тому +1

    Hello, again. I went back over multiplying complex numbers and see where I was going wrong (I was separating the "real" and "imagery" numbers instead of expanding everything out of the brackets. I suppose after about the 4th power then proving the nth root by going back to the original equation will be long winded. At least I know how it works now.

  • @kipchumbavincent2837
    @kipchumbavincent2837 4 роки тому +1

    Thank you

  • @electrotsmishar
    @electrotsmishar 5 років тому

    awesome video. thanks a lot

  • @ritikpatel3286
    @ritikpatel3286 5 років тому +2

    Thanks man....

  • @philwesom8784
    @philwesom8784 7 років тому +1

    what software do u use to make these videos ?

    • @turksvids
      @turksvids  7 років тому

      Doceri on an iPad. I also use a cheap stylus from amazon.
      (doceri.com/)

  • @stuffycow5676
    @stuffycow5676 5 років тому

    at 1:42 I swear that quadrants argument is theta-pi

    • @turksvids
      @turksvids  5 років тому

      I'm working from the assumption that I know the reference angle, call it z, but the actual angle is in QIII. If that's the case, then the actual angle would be pi + z. On the other hand if I wanted to go from a QIII angle to figure out it's reference angle, I would have to do angle - pi.
      Hope this helps!

  • @strugglingcollegestudent
    @strugglingcollegestudent 4 роки тому +1

    Meanwhile, the khan academy video is a whole hour lol. In 8 minutes you learn more then you do from sal in his long ass video

  • @yujiabing8820
    @yujiabing8820 6 років тому

    really helpful, thanks a lot

  • @bobbyjoe4012
    @bobbyjoe4012 3 роки тому

    Thank you so much

  • @ohyuh3483
    @ohyuh3483 4 роки тому +3

    How did people down vote this

  • @oprofisi0nal
    @oprofisi0nal 6 років тому

    congratz man

  • @FortniteJoe123
    @FortniteJoe123 3 роки тому

    Turk the UA-camr

  • @ktex1377
    @ktex1377 5 років тому +2

    Post in 2016 and I just clear in 2019

    • @coldhands6648
      @coldhands6648 3 роки тому

      gotta love how math is timeless ;)

  • @computerscientistscientist
    @computerscientistscientist 6 років тому

    helpful.........................

  • @md.isharulhaquenuhas4508
    @md.isharulhaquenuhas4508 4 роки тому

    here the value of k will be plus minus

    • @turksvids
      @turksvids  4 роки тому

      Not sure what you mean, but I think I disagree. You could go with plus or minus, but not both. You want a unique representation of each root, not two representations of each root.

  • @michaelcampbell2390
    @michaelcampbell2390 3 роки тому

    bless

  • @SoccerStar348
    @SoccerStar348 5 років тому

    thank you!!!!

  • @abhishekms1059
    @abhishekms1059 4 роки тому

    ❤️

  • @irfanmohammad9414
    @irfanmohammad9414 5 років тому

    Ok now how is it going to help me in real life situations? 🙂

    • @turksvids
      @turksvids  5 років тому +3

      add 0i to your situation and make it complex

  • @vvvxzv
    @vvvxzv 4 роки тому

    You're just rushing through everything ffs

    • @turksvids
      @turksvids  4 роки тому

      Could you potentially slow the video down? Is that something that might help you out? Like, hit the gear and pick a slower speed? If that doesn't help I'm sure there are tons of other videos out there that are slower and might help.

    • @vvvxzv
      @vvvxzv 4 роки тому

      @@turksvids it's more that you're saying a value without saying how you got that sometimes. Just abit confusing

    • @turksvids
      @turksvids  4 роки тому

      @@vvvxzv Well that's significantly more useful feedback, so thanks. I make these videos as a supplement for my own students and I assume kind of a lot of background knowledge because of that.

  • @oppongedmond7557
    @oppongedmond7557 5 років тому

    Not good for a beginner

    • @turksvids
      @turksvids  5 років тому +1

      It's not exactly a beginner topic though, to be fair...Assume's a bunch of prior knowledge of complex numbers and algebraic concepts.