How to think outside the Box | Find area of the triangle | Important Geometry skills are explained

Поділитися
Вставка
  • Опубліковано 17 лис 2024

КОМЕНТАРІ • 103

  • @bigm383
    @bigm383 Рік тому +7

    It’s always a pleasure listening to your dulcet tones!❤🥂😊

    • @PreMath
      @PreMath  Рік тому +1

      Wow, thank you!
      Take care, my dear friend. Stay blessed as always🙏

    • @bigm383
      @bigm383 Рік тому

      @@PreMath ❤️😀🍻

  • @pwmiles56
    @pwmiles56 Рік тому +23

    You can use the sine rule.
    sin x / 50 = sin 2x / 80
    sin x /50 = 2 sin x cos x / 80
    cos x = 80 / 100 = 4/5
    From which
    sin x = 3/5 (x is the small angle in a 3-4-5 triangle)
    height h = 80 sin x = 48
    base b = 80 cos x + 50 cos 2x
    cos 2x = cos^2 x - sin^2 x = 7/25
    b = 64 + 14 = 78
    Area = 48 x 78 / 2 = 1872

    • @PreMath
      @PreMath  Рік тому +1

      Thank you! Cheers! 😀

    • @ybodoN
      @ybodoN Рік тому +2

      The height calculation can be ignored since the area is ½ 80 · 78 · sin x😉

    • @sarantis40kalaitzis48
      @sarantis40kalaitzis48 Рік тому

      @@ybodoN That was my first way of solving. I wrote four and two ways were lost. Please check them. I typed it first, they were lost and instead of having 10+ likes i have none!!!

    • @ybodoN
      @ybodoN Рік тому

      @@sarantis40kalaitzis48 MrPwmiles successfully published his trigonometrical (easy to read) solution earlier than you... That's life...

    • @sarantis40kalaitzis48
      @sarantis40kalaitzis48 Рік тому +1

      @@ybodoN i was writing 1,5 hours into laptop.Isaved iit but it hasn't square root symbol.Immediately i started writing from my mobile phone,which has symbols of square root. When i finished the transformation i thought i presed send. Unfortunatelly after 1 hour and 45 minutes everything was lost. Then i was writing another 1 hour. My wife said these days i have no man. And you have right,that's life. Now i'm 60 years old and i have seen it a long ago.

  • @MarieAnne.
    @MarieAnne. Рік тому +9

    Alternate method using law of sines:
    50 / sin x = 80 / sin 2x
    sin 2x / sin x = 80 / 50
    2 sin x cos x / sin x = 8/5
    cos x = 4/5
    sin x = 3/5
    Now we find sin C
    sin C = sin(180−x−2x) = sin(180−3x) = sin 3x = 3 sin x − 4 sin³x = 3(3/5) − 4(27/125) = 117/125
    And finally, we can calculate area of triangle
    Area(ABC) = 1/2 (AC)(BC) sin C = 1/2 (50) (80) (117/125) = 1872

  • @waheisel
    @waheisel Рік тому +1

    I bisected the 2x angle then used similar triangles to get the third side of 78. Then used Heron's formula to get the 1872 area. As usual PreMath's solution was more elegant. Thanks again for the fun math puzzle!

  • @jimlocke9320
    @jimlocke9320 Рік тому +1

    Drop a perpendicular from point D to BC and label the intersection as point F. Note that BC is divided in half, length BF = CF = 40 and two right triangles are formed, ΔBDF and ΔCDF. Hypotenuse BD of ΔBDF has length 50. By Pythagorean theorem on ΔBDF with hypotenuse 50 and side length BF = 40, then side length DF = 30 (familiar 3-4-5 right triangle, scaled up by factor of 10.) ΔBCE and ΔBDF are similar by angle-angle (

  • @Ramkabharosa
    @Ramkabharosa Рік тому +2

    By the Sine Rule, sin(x)/50 = sin(2x)/80 = 2.sin(x).cos(x)/80.
    So cos(x) = 4/5 and sin²(x) = 1- (4/5)² = 9/25. ∴ sin(x) = 3/5.
    So area(Δ ABC) = (½)|AC|.|BC|.sin(180°-3x) = (½)(50)(80)sin(3x)
    =25(80)sin(x){3- 4sin²(x)} =25(80)(3/5)(3- 36/25) =16(3)(39)=1872.

  • @mariorossi5857
    @mariorossi5857 Рік тому +1

    Being 'B' the base of triangle, and 'H' the height:
    B = 80 cos x + 50 cos 2x
    also :
    B²= 50² + 80² - 2. 50.80 cos (180°-3x) [Cosine theorem]
    We have 2 formulas and 2 unknown (B and angle x)
    Then the problem is solved
    Puting theese formulas in an Excel worksheet, i have obtained:
    Angle x= 36.87°
    B = 78 cm
    H = 48 cm
    Area = B.H /2 = 1872 cm² (Solved)

  • @sarantis40kalaitzis48
    @sarantis40kalaitzis48 Рік тому +3

    My fourth geometrical way is the same as Prof.Premath until the calculation of h, by an easy way.WE DRAW DF altitude of isosceles triangle DCB.Then DF is middle bisector of CB,so CF=FB=40. Then use the Rule AREA is Standard ,so AREA of CDB=1/2*DB*CE=1/2*CB*DF so 50*h=80*sqrt(50^2-40^2) so 50*h=80*30 so h=2400/50=48. (DF^2=DB^2-FB^2). Then ED^2=50^2-h^2=50^2-48^2=2500-2304=196 so ED=sqrt(196)=14 and AD=2*14=28 and AB=AD+DB=28+50=78. Finally Area=1/2*AB*h=1/2*78*48=1872. Conclusion the Trigonometrical Method is the easiest of four methods i've shawn.

  • @mariorossi5857
    @mariorossi5857 Рік тому +1

    Theorem of sines:
    sin(x)/50 = sin(2x)/80
    Trigonometric identity:
    sin(2x) = 2 sin(x) cos(x)
    sin(x)/50= 2 sin(x) cos(x) / 80
    80.sin(x)= 100 sin(x) cos(x)
    80 = 100 cos(x)
    cos(x) = 80/100 = 0.8
    x= 36.8699°
    Being 'B' the base of triangle, and 'H' the height:
    B = 80 cos(x) + 50 cos(2x)
    B = 78 cm
    H = 80 sin(x)
    H= 48 cm
    Area = B.H/2
    Area = 1872 cm² (Solved)

  • @mariorossi5857
    @mariorossi5857 Рік тому +1

    Being 'H' the height of triangle.
    H = 80 . sin(x) = 50 . sin(2x)
    sin(2x) = 2 sin(x) cos(x)
    80. sin(x) = 50. 2 sin(x) cos(x)
    80 = 100 cos(x)
    cos(x) = 80/100 = 0.8
    x= 36.8699°
    Area of any triangle:
    A = ½ Side1 Side2 sin(Angle)
    A = ½ 50 . 80 . sin (180°-3x)
    A = 1872 cm² (Solved )

  • @engralsaffar
    @engralsaffar Рік тому

    I did it this way,
    Sinx=h/80
    Sin2x=h/50=2sinxcosx=2(h/80)cosx
    This gives cosx=4/5
    Sin^2x+16/25=1
    Gives sinx=3/5
    Substitute back to get h=48
    Using pythagoras twice gives the bases as 14 and 64 for a total 78
    A=.5*78*48=1872 square units

  • @michaelkouzmin281
    @michaelkouzmin281 Рік тому +5

    I dare say it is not a good practice to use "x" to measure both angles and lines in one problem and even more in one triangle. )))))
    x could be left for angles, and y (for instance) used for line measurements.
    Anycase 👍

    • @ybodoN
      @ybodoN Рік тому +1

      Even better: uppercase Latin letters for vertices, lowercase Latin letters for sides and lower case Greek letters for angles.

    • @e1woqf
      @e1woqf Рік тому

      @@ybodoN 👍
      That's the way I've learned it at school, back then...

  • @williamwingo4740
    @williamwingo4740 Рік тому +1

    Seeing the angles x and 2x made me think of the trigonometric approach. No peeking, no calculators:
    Drop the perpendicular CE. Let CE = h (height of the big triangle); AE = w; and EB = z. Then
    sin 2x = h/50 = 2 sin x cos x = (2)(h/80)(z/80) = hz/3200. So
    h/50 = hz/3200; multiply both sides by 50:
    h = hz/64; divide both sides by h:
    1 = z/64; so z = 64. From here it's just a matter of invoking Pythagoras twice:
    h^2 = 80^2 - 64^2 = 6400 - 4096 = 2304;
    h = √2304 = √((16)(144)) = (√16)(√144) = (4)(12) = 48; and then
    w^2 = 50^2 - 48^2 = 2500 - 2304 = 196;
    w = √196 = √((4)(49)) = (√4)(√49) = (2)(7) = 14.
    So AB = 14 + 64 = 78; and the area is (1/2)(48)(78) = (24)(78) = 1872.
    And it would have been quicker if I'd realized that both right triangles are integer Pythagoreans: AEC is 14-48-50 and EBC is 3-4-5 x 16. But I didn't notice that until the end.
    Cheers. 🤠

  • @santiagoarosam430
    @santiagoarosam430 Рік тому +1

    La vertical por “C” corta a AB en “E”→ Tomando CE como eje, obtenemos el punto D simétrico de A → ∠ADC=2X → CA=50=CD=DB → AB=AE+ED+DB =b+b+50 → 50²-b² = CE²= 80²-(b+50)² → b=14 → AB=(2*14)+50=78 → CE²=50²-b² →CE=48 → Área ∆ABC =78*48/2=1872
    Gracias y saludos.

  • @egillandersson1780
    @egillandersson1780 Рік тому +1

    I used another (a little more complicated) way : sine law to get cos x, then cosine law to get the third side, then Heron's formula to get the area.

  • @tombufford136
    @tombufford136 8 місяців тому

    At a quick glance, Using the sine rule Sin(x)/50 = sin(2x)/80 = sin(C)/AB and the Trig function Sin(2x)= 2*sin(x) * cos(x) Then sin(x)/sin(x)cos(x)= 100/80 then cos(x) = 80/100 and x= 36.87, 2*x = 73.74 and Angle ACB = 180-3*x =69.4. Then AB = (Sin(69.4)/sin(36.87))*50 = 78. area is half base * height = 39 * sin(36.87) * 80 = 1872 area units.

  • @shatabdisinha1239
    @shatabdisinha1239 Рік тому

    The content of your channel is exactly what I was looking for! Kudos for the good work sir! Please keep uploading more of these plane geometry problems. Very helpful.

  • @theoyanto
    @theoyanto Рік тому +1

    Brilliant exercise, looks simple, and is quite simple, but the answer doesnt just jump out at you. You have to make some effort to work your way to the result and that makes it both interesting and challenging. Only humans I think can plan strategies for problem solving, its a gift we should all try to develop, often frustrating but always rewarding. Thanks again

  • @rishudubey1533
    @rishudubey1533 Рік тому +3

    thankyou so much dear professor ❤

    • @PreMath
      @PreMath  Рік тому

      You are very welcome

  • @lindafromcalifornia1155
    @lindafromcalifornia1155 Рік тому

    My first thought was to solve this by using trig. Thanks for showing this other method.

  • @manojitmaity7893
    @manojitmaity7893 Рік тому

    I have solved this problem using trigonometry - a bit different approach. Awaiting for such as more.

  • @AngaNcwana
    @AngaNcwana Рік тому

    You can use Sin2x/80 = Sinx50, and then use the identity Sin2x = 2SinxCosx, from there make Cosx the subject of the formula, it's an easier method for me

  • @quigonkenny
    @quigonkenny 10 місяців тому

    Once you determine that x = 14, there's no need to calculate to find h, as [7, 24, 25] is a primitive Pythagorean Triple, and we already have a 14 (7×2) and a 50 (25×2), meaning 48 (24×2) is the other side.

  • @adgf1x
    @adgf1x Рік тому

    Very good problem and easy solution.

  • @georgebliss964
    @georgebliss964 Рік тому +1

    50/sinx = 80/sin2x.
    General formula, sin2x = 2.sinx.cosx.
    Therefore 50/sinx =80/2.sinx.cosx.
    50.2.sinx.cosx = 80.sinx.
    100 sinx.cosx = 80.sinx.
    Cos x = 80.sinx/100sinx.
    Cos x = 0.8.
    Cos -1, 0.8 = 36.8698 degrees.
    Angle ACB =180 - 3x.
    ACB = 180 - 110.6094.
    ACB =69.3906 degrees.
    Area of triangle = 1/2 x 50 x 80 x sin 69.3906.
    1872.

    • @ybodoN
      @ybodoN Рік тому

      Using the trigonometric identities, we can calculate that the sine of the angle ACB is very precisely 117/125😉
      (this without ever going through the angle values in degrees, imprecise even when rounded to the 4th decimal)

  • @soli9mana-soli4953
    @soli9mana-soli4953 Рік тому

    Extending AB side on the left to point F so that CF= CB=80. (FCB is isoscele)
    angle CFA = x by construnction
    angle FCA = x because of the sum of external angle
    ACF triangle is also isoscele
    so FA = CA = 50
    I found the area of ACF triangle with Erone's formula (only to use something different of Pythagora...) and got Area = 1200
    then found the height of ACF , CE=(1200*2)/50 = 48
    then calculated AE and EB with Pythagorean Theorem... but I prefer trigonometric solution

  • @harikatragadda
    @harikatragadda Рік тому +1

    Cool!
    Exactly samething can be done by drawing a line CF angled X to the left of A.

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀

  • @rabotaakk-nw9nm
    @rabotaakk-nw9nm Рік тому

    7:23 A=sqrt(s(s-a)(s-b)(s-c))
    s=(a+b+c)/2=(50+78+80)/2=104
    A=sqrt(104×54×26×24)=
    sqrt(2^8×3^4×13^2)=
    16×9×13=1872

  • @peterkrauliz5400
    @peterkrauliz5400 Рік тому

    Sin rule for a single angle combined with the Sin rule for the sum of two angles does the job.

  • @honestadministrator
    @honestadministrator Рік тому

    80 /50 = sin(2 x°)/sin(x°) = 2 cos(x°)
    cos ( x°) = 4/5 , sin (x°) = 3/5
    sin (3x°) = 3 sin(x°) - 4 sin^3 (x°)
    = 3 x 3/5 - 4 (27)/125
    = (225 - 108)/225 = 117/225
    = 13/25
    Hereby area of triangle
    = 80 x 50 x 13 /25 x (1/2) sqr unit
    = 1040 sqr unit

  • @vidyadharjoshi5714
    @vidyadharjoshi5714 Рік тому +1

    Draw a Perpendicular h from C to AB. Sin 2x = h/50. Sin x = h/80. h = 80*Sin x. SIn 2x = 80*Sin x /50. 2(Sin x)*(Cos x) = 1.6*Sin x. Cos x = 0.8 = EB/80. EB = 64.
    Cos 2x = 2Cossqx - 1 = .28 = AE/50. AE = 14. AB = 14+64 = 78. x 36.87. h = 80*Sin36.87 = 48. Area = 0.5*48*78 = 1872

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀

  • @solomou146
    @solomou146 Рік тому +1

    Καλημέρα σας. Μπορούμε να πάρουμε το επεκτεταμένο (Γενικευμένο) Πυθαγόρειο θεώρημα για την αμβλεία γωνία BDC του ισοσκελούς τριγώνου BDC και να υπολογίσουμε το x. Μετά με Πυθαγόρειο θεώρημα στο CDΕ, υπολογίζουμε το h. ...

  • @dhrubajyotidaityari9240
    @dhrubajyotidaityari9240 Рік тому

    50/80=sinx/sin2x, sinx=3/5
    Area=½.80.50sin3x
    =2000(3sinx-4sin³x)
    =2000(9/5-4×27/125)
    1872

  • @KAvi_YA666
    @KAvi_YA666 Рік тому

    Thanks for video.Good luck sir!!!!!!!!!

  • @xyz9250
    @xyz9250 Рік тому

    Probably better use a diff letter for the length , as x already used as the angle

  • @rishudubey1533
    @rishudubey1533 Рік тому +2

    amazing problem 😊like always 😊

    • @PreMath
      @PreMath  Рік тому

      Thank you so much 😀

  • @chengzhong5195
    @chengzhong5195 Рік тому

    For grade 11. Using trigonometric functions could be saving some steps.
    Sin2x=2sinx.cosx
    50sin2x = 80sinx
    Cosx=4/5
    Sinx=3/5
    Cos2x = 7/25

  • @Skyflag4
    @Skyflag4 Рік тому

    Hello. CEB triangle is 3-4-5 triangle. Sixteen times it. So answer is shorter by this way.😊

  • @alster724
    @alster724 Рік тому

    After seeing the right triangles formed, the problem became easier

  • @Copernicusfreud
    @Copernicusfreud Рік тому

    Yay! I solved it.

  • @rodicapecheanu2378
    @rodicapecheanu2378 Рік тому

    I agree with th solutions shown, but I disagree with the fact that AB segment is smaller than the CB segment (particularly, 74 versus 80) as seen on the drawing. Whoever came with this problem should have used real values for angles to calculate the sides, and use the real proportions between the two sides given ( AC and BC).
    The values have to make sense too.At least for me...

  • @jimdoyel5044
    @jimdoyel5044 Рік тому

    Clear and well-presented.

  • @illyriumus2938
    @illyriumus2938 Рік тому +1

    thank you!

  • @sarantis40kalaitzis48
    @sarantis40kalaitzis48 Рік тому +1

    When i was typing my rule of sines method.,i tried to show you the calculation of Area by three differnt ways. I pressed something and everything was lost. Luckily MrPwmiles solved it by one of my three ways. I'll discribe the other two ways. First Trigonometrical an second geometrical.Rule of Sines gave
    sin (2x)=80*sinx/50 so 2*sinx*cosx=80*sinx/50 so cosx=80/100=4/5 and sinx=3/5. Formula of Area of Triangle is **1/2*a*b*sin(

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому

    Dal teorema dei seni risulta cosx=4/5...A=(50cos2x+80cosx)*80sinx/2=24*78

  • @vara1499
    @vara1499 Рік тому

    Nice problem.

  • @nssinger4276
    @nssinger4276 Рік тому

    Good probleam.i like it😎

  • @adgf1x
    @adgf1x Рік тому

    Area=(78×48)/2=1872sq unit.

  • @parthtomar6987
    @parthtomar6987 Рік тому +1

    Thanks sir

    • @PreMath
      @PreMath  Рік тому +1

      So nice of you
      Thank you! Cheers! 😀

  • @pralhadraochavan5179
    @pralhadraochavan5179 Рік тому

    Good morning sir

  • @alinayfeh4961
    @alinayfeh4961 Рік тому +1

    About sins rule 👌 😌
    sin x=50 , sin 2x=80
    Sin (x/50)=2sinx ×cosx /80
    Cosx=80/100
    x=54

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀

    • @michaelkouzmin281
      @michaelkouzmin281 Рік тому

      not sin(x)=8/10, but cos(x)=4/5 and x= d36.87

    • @ybodoN
      @ybodoN Рік тому

      Oops! sin x / 50 = 2 sin x cos x / 80 ⇒ cos x = 80/100 (not sin x = 80/100) ⇒ x = 36.87° (the other angle is 53.13°)

    • @alinayfeh4961
      @alinayfeh4961 Рік тому

      @@ybodoN yeah but approximately sinx=4/5 x=54 sorry 🤣

    • @ybodoN
      @ybodoN Рік тому

      @@alinayfeh4961 the problem is not the wrong rounding but the wrong angle (because a "cos" mistakenly became a "sin")

  • @GetMeThere1
    @GetMeThere1 6 місяців тому

    Strange that the actual triangle looks SO different from the diagram. Sure "not to scale" etc., but usually they look approximately as they should...

  • @mohamadtaufik5770
    @mohamadtaufik5770 Рік тому +1

    h^2=50^2-p^2=80^2-(p+50)^2
    p=14
    Area of triangle=(2p+50)*48/2=(28+50)*48/2=1872 square units

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀

  • @wackojacko3962
    @wackojacko3962 Рік тому +1

    Because the sum of theinterior angles of triangle CAD equals 180⁰ and angles CDA and CDB make a straight angle 180⁰...so subtract angle CDA from both interior triangle and straight angles and wallah! The sum of opposite interior angles. 🙂

    • @PreMath
      @PreMath  Рік тому +1

      Thank you! Cheers! 😀

  • @JSSTyger
    @JSSTyger Рік тому

    Sin(2x)=2sin(x)cos(x)...thats the starting point. The area is (14)(48)/2+(64)(48)/2.

    • @JSSTyger
      @JSSTyger Рік тому

      So h/50 = 2(h/80)(EB/80)
      The h cancels out, allowing for a quick solve for EB. The rest of the triangle then just comes together using the pythagorean theorem.

  • @linlu1505
    @linlu1505 Рік тому

    Using Sin and Cos is more straight forward.

  • @murdock5537
    @murdock5537 9 місяців тому

    ∆ABC → AB = AS + BS; AC = 50; BC = 80; sin⁡(ASC) = 1; CS = h; CAB = 2ϑ; ABC = ϑ; area ∆ ABC = ?
    sin⁡(2ϑ) = 2sin⁡(ϑ)cos⁡(ϑ) = h/50 → h = 100sin⁡(ϑ)cos⁡(ϑ); sin⁡(ϑ) = h/80 → h = 80sin⁡(ϑ) = 100sin⁡(ϑ)cos⁡(ϑ) →
    cos⁡(ϑ) = 4/5 → sin⁡(ϑ) = 3/5 → sin⁡(2ϑ) = 24/25 → cos⁡(2ϑ) = 7/25 → ∆ BCS = pyth. triple 16(3 - 4 - 5)
    ∆ ASC = pyth. triple 2(7 - 24 - 25) → h = 48 → BS = 64 → AS = 14 → AB = 78 → area ∆ ABC = 39(48) = 13(12)^2

  • @LogintoMaths
    @LogintoMaths Рік тому

    Its easy with sin rule❤

  • @m92is
    @m92is Рік тому

    Why I become 2000? I find area of square and divide on 2

  • @IITIANPRINCERAI-so2kq
    @IITIANPRINCERAI-so2kq Рік тому +1

    Sir iss question ko maine vector ka concept lagake solve kiya

    • @PreMath
      @PreMath  Рік тому

      Bravo!
      Thank you! Cheers! 😀

    • @manojitmaity7893
      @manojitmaity7893 Рік тому

      Kaise mujhe jara hints dijiye...

    • @IITIANPRINCERAI-so2kq
      @IITIANPRINCERAI-so2kq Рік тому

      Bro woh wla method Jahangir angle bane wha cosx Lena Hai use perpendicular mein sinx top base aur height ko sinx and cost substitute karke solve kiya

    • @IITIANPRINCERAI-so2kq
      @IITIANPRINCERAI-so2kq Рік тому

      Resolution of vector se

  • @블루베리7
    @블루베리7 Рік тому

    6x=180 x=30 ... error

  • @misterenter-iz7rz
    @misterenter-iz7rz Рік тому +1

    Out box? First I would do it in a traditional way. Draw CD, where D on AB and angle ADC 2x, thus the triangle DBC is an isosceles triangle with sides 50-80-50, then clearly the height of this triangle is 30, and sin x is 3/5, and the angle outside ACB is 3x, the height of the great triangle is 50xsin 3x=50(3sin x-4sin^3 x)=50(9/5-108/125)=90-43.2=46.8, therefore the answer is 80x46.8/2=1872.🙂

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀

    • @misterenter-iz7rz
      @misterenter-iz7rz Рік тому

      @@PreMath My solution is still imcomplete, now it is.😃

    • @PreMath
      @PreMath  Рік тому

      @@misterenter-iz7rz
      Great!

  • @pralhadraochavan5179
    @pralhadraochavan5179 Рік тому +1

    Good morning sir