Nice Exponential Equation Problem | Math Olympiad Challenge

Поділитися
Вставка
  • Опубліковано 17 січ 2025

КОМЕНТАРІ • 11

  • @waltenegus
    @waltenegus Місяць тому

    if x = b^50, then I got x = 1/2 + 3/2, and x = 1/2 - 3/2, which results in x = -1, x = 2

  • @childofGOD1962
    @childofGOD1962 Місяць тому

    b=0,04 so 100 b = 4 and then 50 b = 2 so 4-2=2

    • @MathswithChinwendu
      @MathswithChinwendu  Місяць тому

      👍

    • @arkadeusz91
      @arkadeusz91 Місяць тому

      Ummm... That was not the equation to solve... it's not 100b+50b=2, it's b^100+b^50=2 (or b to the 100th power plus b to the 50th power equals 2). Nonetheless you solved the first equation correctly :)

  • @stpat7614
    @stpat7614 Місяць тому

    I get three solutions, not two:
    b^100 + b^50 = 2
    b^100 + b^50 - 2 = 2 - 2
    b^100 + b^50 - 2 = 0
    b^(50*2) + b^(50) - 2 = 0
    (b^50)^2 + b^50 - 2 = 0
    Let t = b^50
    t^2 + t - 2 = 0
    t^2 + (-1t + 2t) + (-1)*(2) = 0
    (t^2 - 1t) + (2t - 2) = 0
    t(t - 1) + 2(t - 1) = 0
    (t - 1)(t + 2) = 0
    t - 1 = 0, or t + 2 = 0
    t - 1 + 1 = 0 + 1, or t + 2 - 2 = 0 - 2
    t = 1, or t = -2
    b^50 = 1, or b^50 = -2
    Suppose b^50 = 1
    (b^50)^(1/2) = +/- 1^(1/2)
    b^(50/2) = +/- 1^(1/2)
    b^25 = +/- 1
    b^25 = 1, or b^25 = -1
    (b^25)^(1/25) = 1^(1/25), or (b^25)^(1/25) = (-1)^(1/25)
    b^(25/25) = 1, or b^(25/25) = (-1)
    b = 1, or b = -1
    Suppose b^50 = -2
    log(b^50) = log(-2)
    50*log(b) = log(-2)
    50*log(b)/50 = log(-2)/50
    log(b) = log(-2)/50
    log(b) = log(2*[-1])/50
    log(b) = log(2*i^2)/50
    log(b) = (log[2] + log[i^2]) / 50
    log(b) = (log[2] + 2*log[i]) / 50
    e^log(b) = e^([log(2) + 2*log(i)] / 50)
    b = e^([log(2) + 2*log(i)] / 50)
    b1 = 1
    b2 = -1
    b3 = e^([log(2) + 2*log(i)] / 50)

    • @MathswithChinwendu
      @MathswithChinwendu  Місяць тому

      Wow thank you so much for sharing this

    • @stpat7614
      @stpat7614 Місяць тому

      @@MathswithChinwendu Was I right? Isn't -1 also a solution?

  • @stpat7614
    @stpat7614 Місяць тому

    Can't b also be equal to -1?

    • @MathswithChinwendu
      @MathswithChinwendu  Місяць тому

      It can because it satisfies the equation

    • @stpat7614
      @stpat7614 Місяць тому

      @@MathswithChinwendu I can't seem to find the error in your formula.