A Math Olympiad Question | Can You Solve This? | System of Equations

Поділитися
Вставка
  • Опубліковано 10 лис 2024

КОМЕНТАРІ • 11

  • @taniacsibi6879
    @taniacsibi6879 Місяць тому

    Demonstrația mi-a plăcut. Cind s-a ajuns la eg. Xy+ xz+zy=x+y +z. Deoarece x,y,z€z+ rezulta ca x=y=z=1 E=3

  • @abcekkdo3749
    @abcekkdo3749 Місяць тому

    E=3

  • @Fjfurufjdfjd
    @Fjfurufjdfjd Місяць тому

    χ=y=z=1 ; χ^2+y^2+ z^2=3 (λυση προφανης)

    • @Fjfurufjdfjd
      @Fjfurufjdfjd Місяць тому

      Το συστημα ειναι ισοδυναμο με χz+y=2z χy+z=2χ yz+χ=2y προκυπτει η σχεση χ+y+z= χz+zy+yχ

    • @Fjfurufjdfjd
      @Fjfurufjdfjd Місяць тому

      Για μενα η πιο δυσκολη ασκηση. Δεν μπορεσα να τη λυσω. Ξοδεψα ενα πακετο κολλες Α4

  • @key_board_x
    @key_board_x Місяць тому

    (1/y) + (1/xz) = 2/xy
    (1/z) + (1/xy) = 2/yz
    (1/x) + (1/yz) = 2/xz
    Let: a = 1/x
    Let: b = 1/y
    Let: c = 1/z
    (1): b + ac = 2ab
    (2): c + ab = 2bc
    (3): a + bc = 2ac
    From (1)
    b + ac = 2ab
    c = (2ab - b)/a ← equation (3)
    From (2)
    c + ab = 2bc
    c - 2bc = - ab
    c.(1 - 2b) = - ab
    c = ab/(2b - 1) → recall (3)
    ab/(2b - 1) = (2ab - b)/a
    a²b = (2b - 1).(2ab - b)
    a²b = 4ab² - 2b² - 2ab + b
    a²b - 4ab² + 2b² + 2ab - b = 0
    b.(a² - 4ab + 2b + 2a - 1) = 0
    First case: b = 0 → the system becomes:
    b + ac = 2ab → 0 + ac = 0 → ac = 0 → a = 0 or c = 0
    c + ab = 2bc → c + 0 = 0 → c = 0
    a + bc = 2ac → a + 0 = 2ac → a - 2ac = 0 → a.(1 - 2c) = 0 → and if c = 0 → a = 0
    So, this case is not possible.
    Second case: (a² - 4ab + 2b + 2a - 1) = 0
    a² - 4ab + 2b + 2a - 1 = 0
    - 4ab + 2b = - a² - 2a + 1
    b.(- 4a + 2) = - a² - 2a + 1
    b = (a² + 2a - 1)/(4a - 2) ← equation (4)
    From (1): b + ac = 2ab
    b - 2ab = - ac
    b.(1 - 2a) = - ac
    b = ac/(2a - 1) → recall (4)
    ac/(2a - 1) = (a² + 2a - 1)/(4a - 2)
    ac.(4a - 2) = (2a - 1).(a² + 2a - 1)
    4a²c - 2ac = 2a³ + 4a² - 2a - a² - 2a + 1
    4a²c - 2ac = 2a³ + 3a² - 4a + 1
    c.(4a² - 2a) = 2a³ + 3a² - 4a + 1
    c = (2a³ + 3a² - 4a + 1)/(4a² - 2a) ← equation (4)
    From (3): a + bc = 2ac
    bc = 2ac - a
    b = (2ac - a)/c → recall (4)
    (2ac - a)/c = (a² + 2a - 1)/(4a - 2)
    (2ac - a).(4a - 2) = c.(a² + 2a - 1)
    8a²c - 4ac - 4a² + 2a = a²c + 2ac - c
    7a²c - 6ac + c = 4a² - 2a
    c.(7a² - 6a + 1) = 4a² - 2a
    c = (4a² - 2a)/(7a² - 6a + 1) → recall (5)
    (4a² - 2a)/(7a² - 6a + 1) = (2a³ + 3a² - 4a + 1)/(4a² - 2a)
    (4a² - 2a).(4a² - 2a) = (7a² - 6a + 1).(2a³ + 3a² - 4a + 1)
    16a⁴ - 8a³ - 8a³ + 4a² = 14a⁵ + 21a⁴ - 28a³ + 7a² - 12a⁴ - 18a³ + 24a² - 6a + 2a³ + 3a² - 4a + 1
    - 14a⁵ + 7a⁴ + 28a³ - 30a² + 10a - 1 = 0
    14a⁵ - 7a⁴ - 28a³ + 30a² - 10a + 1 = 0 ← memorize this equation as (6)
    14a⁵ - 7a⁴ - 28a³ + 30a² - 10a + 1 = 0 → before to continue, generally, I try to find an obvious root (- 2 or - 1 or 0 or 1 or 2)
    14a⁵ - 7a⁴ - 28a³ + 30a² - 10a + 1 = 0 → you can see that (1) is an obvious root, so you can factorize (a - 1)
    (a - 1).(14a⁴ + αa³ + βa² + γa - 1) = 0 → you expand
    14a⁵ + αa⁴ + βa³ + γa² - a - 14a⁴ - αa³ - βa² - γa + 1 = 0 → you group
    14a⁵ + a⁴.(α - 14) + a³.(β - α) + a².(γ - β) - a.(1 + γ) + 1 = 0 → you identify
    (α - 14) = - 7 → α = 7
    (β - α) = - 28 → β = - 28 + α → β = - 21
    (γ - β) = 30 → γ = 30 + β → γ = 9
    (1 + γ) = 10 → γ = 9, of course because above
    (a - 1).(14a⁴ + αa³ + βa² + γa - 1) = 0 → it becomes
    (a - 1).(14a⁴ + 7a³ - 21a² + 9a - 1) = 0 → you can see that (1/2) is an obvious root, so you can factorize [a - (1/2)]
    [a - (1/2)].(14a³ + αa² + βa + 2) = 0 → you expand
    14a⁴ + αa³ + βa² + 2a - 7a³ - (1/2).αa² - (1/2).βa - 1 = 0 → you group
    14a⁴ + a³.(α - 7) + a².[β - (1/2).α] + a.[2 - (1/2).β] - 1 = 0 → you identify
    (α - 7) = 7 → α = 14
    [β - (1/2).α] = - 21 → β = - 21 + (1/2).α → β = - 14
    [2 - (1/2).β] = 9 → (1/2).β = - 7 → β = - 14, of course because above
    [a - (1/2)].(14a³ + αa² + βa + 2) = 0 → it becomes
    [a - (1/2)].(14a³ + 14a² - 14a + 2) = 0 → don't forget the first factor (a - 1)
    (a - 2).[a - (1/2)].(14a³ + 14a² - 14a + 2) = 0 → you can multiply by 2 both sides
    We can stop here, because we have 2 values for a (1) & (1/2). Let's keep (1), because it's easier.
    When a = 1, the system becomes
    (1): b + ac = 2ab → (1'): b + c = 2b
    (2): c + ab = 2bc → (2'): c + b = 2bc
    (3): a + bc = 2ac → (3'): 1 + bc = 2c
    Let's calculate (1') + (2')
    (b + c) + (c + b) = 2b + 2bc
    2b + 2c = 2b + 2bc
    2c = 2bc
    c = bc → we know that a, b & c cannot be zero
    c/c = b ← so we can see that: b = 1
    When b = 1, the system becomes
    (1'): b + c = 2b → (1''): 1 + c = 2 → c = 1
    (2'): c + b = 2bc → (2''): c + b = 2bc → c + 1 = 2c → c = 1
    (3'): 1 + bc = 2c → (3''): 1 + bc = 2c → 1 + c = 2c → c = 1
    Conclusion: a = b = c
    Recall: a = 1/x = 1 → x = 1
    Recall: b = 1/y = 1 → y = 1
    Recall: c = 1/z = 1 → z = 1
    → x² + y² + z² = 1² + 1² + 1² = 3
    To go further, when a = 1/2, the system becomes
    (1): b + ac = 2ab → b + (c/2) = b → c/2 = 0 → c = 0
    (2): c + ab = 2bc → c + (b/2) = 2bc → c - 2bc = - b/2 → c.(1 - 2b) = - b/2 → c = b/2.(2b - 1) ← not possible because above
    (3): a + bc = 2ac → (1/2) + bc = c → c - bc = 1/2 → c.(1 - b) = 1/2 → c = (1 - b)/2 ← not possible because above
    So, we can see that other value for a (excepted 1) doesn't solve the system.

  • @Quest3669
    @Quest3669 Місяць тому

    ?= 3

  • @RajeshKumar-wu7ox
    @RajeshKumar-wu7ox Місяць тому +1

    X=Y=z=1 . E=3

  • @SidneiMV
    @SidneiMV Місяць тому

    xz + y = 2z
    xy + z = 2x
    yz + x = 2y
    xy + xz + yz = x + y + z
    E = x² + y² + z²
    (x + y + z)² = x² + y² + z² + 2(xy + xz + yz)
    E = x² + y² + z² = (x + y + z)² - 2(x + y + z)
    ..... I don't know how to continue .....