Volume of a sphere with a triple integral

Поділитися
Вставка
  • Опубліковано 16 лис 2024

КОМЕНТАРІ • 56

  • @bprpcalculusbasics
    @bprpcalculusbasics  2 місяці тому +5

    The disk method version: ua-cam.com/video/VBR7boMYaN4/v-deo.html

  • @primaryendo
    @primaryendo Місяць тому +2

    10 years ago when i was in electrical engineering a teacher gave this problem on a test and i got it right. I've forgotten how to do calculus now, but i still find it so cool!

  • @cdkw8254
    @cdkw8254 2 місяці тому +28

    I love how I started my school calc with your videos and now I will get to do college with your calc 3 videos!

  • @allmight801
    @allmight801 2 місяці тому +78

    You know what is even more interesting? It's finding the volume of a figure that is bounded by z=sqrt(x^2+y^2), x^2+y^2+z^2=1 and x^2+y^2+z^2=4 with a triple integral

    • @tfg601
      @tfg601 2 місяці тому +5

      Area is crazy

    • @allmight801
      @allmight801 2 місяці тому +3

      @@tfg601 True i suppose. Better change it o volume

    • @maxvangulik1988
      @maxvangulik1988 2 місяці тому +8

      the cone phi=pi/4
      the spheres rho=1 and rho=2
      let's just take the top one for now.
      V=int[0,2pi](int[0,pi/4](int[1,2](rho^2•sin(phi))drho)dphi)dtheta
      V=2pi•int[0,pi/4](sin(phi))dphi•int[1,2](rho^2)drho
      V=2pi•(-cos(phi))|[0,pi/4]•(rho^3/3)|[1,2]
      V=14pi/3•(1-1/sqrt(2))

    • @allmight801
      @allmight801 2 місяці тому +3

      @@maxvangulik1988 Yea that's right. Want something even better?

    • @khiemgom
      @khiemgom 2 місяці тому

      @@allmight801 i cant even solve the previous one but sureeee

  • @alexdefoc6919
    @alexdefoc6919 2 місяці тому +1

    When i was in 10th grade i started to find you and many other math channels. Since then i became a math addict and been going to events and it was fun. Math is an enjoyment now thank you so much!. Making it always interesting, these small things, we encounter randomly when we learn something hard, then suddenly the connection form and we can learn faster and easier and have more fun

  • @cringy7-year-old5
    @cringy7-year-old5 5 місяців тому +11

    I am so blessed to have bprp making calc 3 videos right when I am studying to clep it in july/august

  • @yash1152
    @yash1152 2 місяці тому +3

    3:27 jacobian or geometry to get the internal part of the integral

  • @Iomhar
    @Iomhar 2 місяці тому +2

    I like how you say sephere! I really do.

  • @terawattyear
    @terawattyear 2 місяці тому

    Yes neat! Way cool. I ended my studies of Calculus with dropping out of my Calculus 2 class - 45 years ago or so. However, I pretty much can follow what you are showing here, and it is indeed elegant. Reminds me of the rotation of equations to yield solids which I really loved. Thanks!

  • @Siccmann
    @Siccmann 2 місяці тому +1

    Here's a challenge/suggestion: evaluate the Jacobian of hypersphere coordinates.

  • @danmike2305
    @danmike2305 Місяць тому

    Good example, problem. Krista King also has good points on this topic

  • @Luigi-hn1hu
    @Luigi-hn1hu 2 місяці тому +6

    I do not understand every concept on the video yet

  • @Alphamatics1234
    @Alphamatics1234 2 місяці тому

    Finally I managed to make u a video on triple integration

  • @Sg190th
    @Sg190th 2 місяці тому +1

    My goodness. I wanna know how they actually come up with the actual formulas.

  • @lauraprates8764
    @lauraprates8764 2 місяці тому

    I think it's because to get to the other half you can just rotate within the theta axis

  • @urluberlu2757
    @urluberlu2757 2 місяці тому

    Thank you !

  • @jomariraphaellmangahas1991
    @jomariraphaellmangahas1991 2 місяці тому +2

    Lezgo another upload

  • @boxYFA
    @boxYFA 2 місяці тому

    this is very nice

  • @Tim-Kaa
    @Tim-Kaa 2 місяці тому +1

    Nice

  • @elfeiin
    @elfeiin 2 місяці тому

    THAT WAS COOL

  • @louis-paulhayoun2002
    @louis-paulhayoun2002 2 місяці тому

    nice !

  • @NeedsMorePants
    @NeedsMorePants 2 місяці тому

    Seeing stuff like this makes me wish I was capable of learning calculus, it's fairly neato.

    • @saggetarious97
      @saggetarious97 2 місяці тому +6

      Everyone is capable of learning calculus as long as they want it enough! 😁

    • @NeedsMorePants
      @NeedsMorePants 2 місяці тому

      @@saggetarious97 I want to believe, but after 2 different tries at calc 1 with 2 different teachers, and 4 more book after that, I'm a bit more than skeptical about my ability to do so.

  • @ezxd5192
    @ezxd5192 2 місяці тому +5

    Why is phi not from 0 to 2pi?

    • @stewartcopeland4950
      @stewartcopeland4950 2 місяці тому +7

      If you rotate half a meridian that connects north to south (phi = pi) through an angle of theta = 2*pi, then you sweep the entire surface of the sphere for a radius between 0 and R

    • @jomariraphaellmangahas1991
      @jomariraphaellmangahas1991 2 місяці тому +2

      Imagine rotating a circle in pi radians and the visualization of the rotation, which is like rendering the sphere

    • @BackflipsBen
      @BackflipsBen 2 місяці тому +4

      Imagine holding a plate in your hand and you spin it until it's upside down. During that half-flip, one half of the plate will trace out the top of the sphere and the other half of the plate will trace out the bottom.
      An example on a lower dimension: If instead of having a simple radius, you had a double-sided lightsaber radius, you'd only need 1pi rotation to form the complete sphere

    • @ezxd5192
      @ezxd5192 2 місяці тому

      ​@@BackflipsBenis there a reason for why it works "double sided" while theta doesn't work like that and thus we used 2pi for theta?

    • @ironspidey0
      @ironspidey0 2 місяці тому

      ​@@ezxd5192You rotate the radius in 2 dimensions first to make the circle, which then covers both sides of the sphere at once so only needs to be flipped upside down like the plate in his example.

  • @thirstyCactus
    @thirstyCactus 2 місяці тому +2

    BlackPenRedPenBluePen :D

  • @TiagoSilva-yc5be
    @TiagoSilva-yc5be 2 місяці тому +1

    i didnt understand where the p^2 * sin(phi) inside of the integral came from?

    • @manjugangwar7245
      @manjugangwar7245 2 місяці тому

      jacobian

    • @bprpcalculusbasics
      @bprpcalculusbasics  2 місяці тому +3

      Why is the differential ρ^2sinθ dρdθdφ? (the geometry)
      ua-cam.com/video/uL_yq733CTY/v-deo.html

  • @zabihullohibrohimov6580
    @zabihullohibrohimov6580 2 місяці тому +1

    Cool I know two other way of proof

  • @chrisglosser7318
    @chrisglosser7318 2 місяці тому

    Now do the volume of an N-sphere

    • @BRunoAWAY
      @BRunoAWAY 2 місяці тому

      See the 1d ,2d ,3d and make the generalization to n

  • @unflexian
    @unflexian 2 місяці тому

    my dumb physicist brain cannot comprehend theta being longitude and phi being latitude

  • @roninkegawa1804
    @roninkegawa1804 2 місяці тому

    If this is how you teach math, you must have confused students who all fail your class. This was a perfect example of how not to teach math.

    • @robertlezama1958
      @robertlezama1958 2 місяці тому

      What would you suggest instead?

    • @roninkegawa1804
      @roninkegawa1804 2 місяці тому +1

      @@robertlezama1958 You can not throw equations on the board without explaining where they come from. You have to use scaffolding and spiraling when teaching.

    • @robertlezama1958
      @robertlezama1958 2 місяці тому

      @@roninkegawa1804 I kinda see your point. I just like having these videos, so I want to support and encourage folks to make them.