You Laugh, You Integrate... [ feat.

Поділитися
Вставка
  • Опубліковано 13 січ 2025

КОМЕНТАРІ • 631

  • @integralboi2900
    @integralboi2900 4 роки тому +2395

    Andrew’s integration skills make me feel smarter

    • @AndrewDotsonvideos
      @AndrewDotsonvideos 4 роки тому +899

      If there's only one thing I know it's that \int lnx = 1/x

    • @PapaFlammy69
      @PapaFlammy69  4 роки тому +264

      @@AndrewDotsonvideos xDDD

    • @integralboi2900
      @integralboi2900 4 роки тому +42

      Andrew replied ^_^

    • @thephysicistcuber175
      @thephysicistcuber175 4 роки тому +37

      Are we not talking about flammy just being a dumbo with d^2/(d^2+1)?

    • @user-en5vj6vr2u
      @user-en5vj6vr2u 4 роки тому +25

      @@thephysicistcuber175 they were both clowns the entire video

  • @flowerwithamachinegun2692
    @flowerwithamachinegun2692 4 роки тому +2174

    "Everything is convergent if you're brave enough"
    I'm definitely taking this attitude to my next calc exam

    • @ammyvl1
      @ammyvl1 4 роки тому +105

      No don't

    • @sigmundfreud4472
      @sigmundfreud4472 4 роки тому +62

      I dare you to use the Riemann series theorem (or whatever it’s called) and just rearrange terms to show every divergent series converges to 69. ;)

    • @khaledchatah3425
      @khaledchatah3425 4 роки тому

      ikr

    • @Krishnajha20101
      @Krishnajha20101 3 роки тому +2

      @@sigmundfreud4472 Nice. And username definitely checks out.

    • @Wabbelpaddel
      @Wabbelpaddel 3 роки тому +6

      Your prof be like: "Everything is a failed exam if you're brave enough"

  • @SV-yo6nq
    @SV-yo6nq 4 роки тому +1050

    "-420 is approximately zero"
    "yeah for small values of 420"
    lmfao

    • @Smitology
      @Smitology 3 роки тому +8

      No I missed the moment this comment reached 420 likes

    • @lukejames3039
      @lukejames3039 3 роки тому +45

      @@Smitology it still is at 420 for large values of 420

  • @davidberardo93
    @davidberardo93 4 роки тому +1037

    I never knew I needed competitive meme integral solving, but I need it

  • @josedavid8903
    @josedavid8903 4 роки тому +345

    There is nothing better than trying to solve integrals while a german guy laughs at you, it is definitely as good as it gets...

  • @luisantoniogarcia9894
    @luisantoniogarcia9894 4 роки тому +197

    "Anything is convergent is you're brave enough"
    I try to live my life by that marvelous phrase

    • @YaamFel
      @YaamFel 4 роки тому +12

      Spoken like a true physicist

  • @lourencoentrudo
    @lourencoentrudo 4 роки тому +447

    Clever memes:
    Flammable Math:
    "Your sister could be dead":
    Flammable Math: LMAO DEAD SISTER

  • @6900xx
    @6900xx 4 роки тому +311

    12:07 "proof by knowing what the answer is" lmao 😂😂😂

    • @lior_shiboli
      @lior_shiboli 4 роки тому +12

      7th grade me wished i could have used it

  • @aryandwivedi4875
    @aryandwivedi4875 4 роки тому +465

    Please keep this series alive haven't laughed this much in a while. Really keep this series going ahead.

  • @apk2626
    @apk2626 4 роки тому +183

    If this is the level of humor you acquire when doing maths then I'm never stopping doing it.

    • @PapaFlammy69
      @PapaFlammy69  4 роки тому +15

      :D

    • @catlavettosic825
      @catlavettosic825 3 роки тому +8

      It does come with some problems...like trying to convince anyone other than other mathematicians that you are sane.

  • @Naliathan
    @Naliathan 4 роки тому +52

    I'm so happy that I'm not only who forgets if int ln x = 1/x or int 1/x =ln x

  • @maclambert2932
    @maclambert2932 4 роки тому +122

    Jens: Good morning fellow mathematicians
    Me (A mechanical engineering major): *Nervous sweating*

  • @arsenmingo62
    @arsenmingo62 4 роки тому +513

    Dude, the last one's trivial. e = pi, so the integaral evaluates to zero.

    • @tomatenbomber8830
      @tomatenbomber8830 4 роки тому +23

      they are making that joke in the video sir

    • @plainText384
      @plainText384 4 роки тому +23

      When you realise that he could have just drawn some triangles to find the area under f(x) = x

  • @clubstepdj
    @clubstepdj 4 роки тому +77

    For the last one i used the "area method" since x is a simple function and the shape of area is just a trapezium
    = (f(π) + f(e))(π - e) / 2
    = (π + e)(π - e)/2
    = (π² - e²)/2
    = π²/2 - e²/2

  • @williamschmidt-hansen6311
    @williamschmidt-hansen6311 4 роки тому +191

    "Whalecum to another video" 😂

  • @roshanakadorabarrett562
    @roshanakadorabarrett562 4 роки тому +75

    Andrew’s integration skills are making me wish that I stayed in my mathematical career.

  • @imagzz4942
    @imagzz4942 4 роки тому +39

    Favorite quote of the video: "Proof by knowing the answer".
    xd

    • @darkfinal9964
      @darkfinal9964 3 роки тому +1

      Me, an Aerospace engineer student: "Mhh, I see nothing wrong here."

  • @professionalprocrastinator8103
    @professionalprocrastinator8103 4 роки тому +128

    Andrew: *breathes*
    Jens: "Haha you laughed!!!"

  • @rishabhscodes
    @rishabhscodes 4 роки тому +54

    "Everything converges if you wait long enough" ~ Andrew Dotson.

  • @nyxalmagest7226
    @nyxalmagest7226 4 роки тому +26

    This is absolutely amazing! as someone who enjoys integrating but doesn't love it, it was an amazing way of practicing, I paused and solved each integral with you guys! Although it began as procrastination I ended up practicing!!! And my exam is in 3 weeks!! Thanks!

  • @randymi9334
    @randymi9334 4 роки тому +164

    Andrew is proof you don't need calculus to do physics

    • @takeuchi5760
      @takeuchi5760 3 роки тому +17

      I mean he was probably rusty on integration or something, cuz you can go a long time without encountering serious integration while doing physics.
      But when you are solving real problems, you better know integration.

    • @leoman5481
      @leoman5481 2 роки тому +5

      @@takeuchi5760 you can study maths and go a long time with out integration

    • @createyourownfuture5410
      @createyourownfuture5410 2 роки тому +2

      @@leoman5481 Yes except that the connection of branches in mathematics is just a mess, like for some reason the zeta function which is defined in the complex numbers gives information about the distribution of primes, which is dealt with in number theory. You just cannot say that you will never encounter integrals if you are a professional in other branches of mathematics.

  • @someoneuppingdudetechnical6320
    @someoneuppingdudetechnical6320 4 роки тому +61

    Andrew laughs while internally dying at 9:28 after being reminded of massive American college debt oof.
    I hope for him that it's not that bad

  • @ayushsambher920
    @ayushsambher920 3 роки тому +16

    19:22 You could have done +1 - 1 in the numerator and split the fraction
    It will become Integral of [1 - 1/(d²+1)]
    So that will be d - (arc tan d) + D

  • @mitchellsolano1631
    @mitchellsolano1631 4 роки тому +26

    "Everything converges if you wait long enough." Spoken like a true physicist Andrew.

  • @lainer4708
    @lainer4708 4 роки тому +45

    Engineers: Where's the table??

    • @HormersdorfLP
      @HormersdorfLP 4 роки тому +17

      Honestly true. I thought. These techniques and what the heck is a sec^2. That's gotta be in a table. Otherwise I am lost. I call it proof by someone elses work

    • @jeangtech1830
      @jeangtech1830 4 роки тому

      @@HormersdorfLP LMFAO

  • @alexanderjordan9894
    @alexanderjordan9894 3 роки тому +14

    "Reading the rest of the meme is left as an exercise for the viewer" killed me

  • @felixmende2693
    @felixmende2693 4 роки тому +58

    Is one a nerd if one finds this genuinely entertaining?

  • @xtremeblaze777
    @xtremeblaze777 4 роки тому +130

    Nobody:
    Not even Americans:
    Jens: "Hee"

  • @pedropiata648
    @pedropiata648 5 місяців тому +1

    20:04 the easiest way to sove that is by long division, you will get 1-1/(d²+1) which is trivial

  • @machine4971
    @machine4971 4 роки тому +16

    I put the first integral into wolfram alpha and it told me “no result found in terms of standard mathematical functions”... holy hell

    • @knvids2812
      @knvids2812 Рік тому +1

      New result didn’t drop

  • @raghav9o9
    @raghav9o9 4 роки тому +10

    19:44 that is the easiest integral of the whole video just +1 and -1 in the numerator and then separate the denominator, thus then you have to Integrate dd and -1/d^2+1 dd so the answer is d - tan^-1(d).

  • @Ganerrr
    @Ganerrr 3 роки тому +10

    "python can't do things like 420^71"
    ah, you appear to have forgot about one of python's coolest features, unbounded sized ints!

  • @igormodesto3123
    @igormodesto3123 4 роки тому +17

    "good morning fellow mathematicians, welcbaktnuda veedio"
    accurate

  • @qwertyman506
    @qwertyman506 Рік тому +4

    This is unironically awesome practice for my test tomorrow as a calc2 student

  • @SlipperyTeeth
    @SlipperyTeeth 4 роки тому +39

    8:35 You can't interchange the limit. As written, you are asking for the limit of a constant number, so for example you could replace that limit with one approaching 72 and your answer shouldn't change. But by interchanging, you are taking the integral of a constant, and this constant does depend on the value the limit is approaching, but that wouldn't be the case if you were free to interchange them through the integral.
    You are playing too loose with dummy variables. The definition of the definite integral requires that its dummy variable be free to vary throughout its region of integration. When pulled inside, the limit that uses the same dummy variable places an additional restriction on the dummy variable that breaks the original definition of the definite integral.

    • @genie9845
      @genie9845 4 роки тому

      My thoughts exactly, the area function limit might differ for the general case

    • @Ryan-gq2ji
      @Ryan-gq2ji 4 роки тому +3

      Yeah, that integral didn't make too sense honestly. Letting a variable approach a constant but also integrating with respect to the same variable? Doesn't really make sense honestly

  • @clevelandHater
    @clevelandHater 3 роки тому +3

    I’ve never seen someone so excited to show off their integral collection
    Awesome video :D

  • @thomasstokes9412
    @thomasstokes9412 4 роки тому +4

    @ 8:24 You can't interchange the limit and the integral in this case because the limit is respect the variable you are also integrating. If you work it out then you find that the answer is approximately -0.00543 (\int_42^111 sin(x)/x dx).

  • @jatinyadav6957
    @jatinyadav6957 4 роки тому +10

    The collab i've been waiting for

  • @terezazuskinova2926
    @terezazuskinova2926 4 роки тому +8

    Definitely doing this with my friend as a preparation for our upcoming calculus exam! 😂❤️great inspiration

    • @stuffz4040
      @stuffz4040 4 роки тому +2

      Dude that is a brilliant study strategy for many classes, now I just need friends

  • @jessec4094
    @jessec4094 4 роки тому +10

    “Take a deep breath such that you don’t laugh”

  • @RC32Smiths01
    @RC32Smiths01 4 роки тому +3

    Dude, a great collaboration! Awesome to see you guys at it again!

  • @HaniaTauqeer-c2k
    @HaniaTauqeer-c2k 5 місяців тому +1

    Watching this video makes me feel like a complete idiot, but it gives me something to aim for in the future.

  • @markosth09
    @markosth09 Рік тому +1

    8:24 you can't interchange the limit and the integral, instead you have to use the sine integral function Si(x)=int 0..x sin(x)/x. lim x->0 [int 42..111 sin(x)/x dx]=lim x->0 Si(111)-Si(42)=Si(111)-Si(42)≈-0.00543373

  • @timhaigis1087
    @timhaigis1087 4 роки тому +26

    For small values of 420 it is approximately 0...
    Seems legit

  • @HormersdorfLP
    @HormersdorfLP 4 роки тому +24

    Integrate x dx. Everyone: it's x^2/2...
    Him: let's substitute bs here and use e^some more bs.

  • @klaus9107
    @klaus9107 4 роки тому +43

    OMG Papa Jens, I think you made a mistake! Are you sure about interchanging the limit and the integral at 8:20? The evaluated integral does not depend on ∂ anymore, so the answer would be something with Si(x) because you could ignore the limit.
    The way you are doing it, you should include the d∂ in the limit, but then the integral would not make any sense.

    • @gdsfish3214
      @gdsfish3214 4 роки тому +12

      Whatever he did there was definitely not correct lol. Since the integral from 42 to 111 is already a constant which does not depend on the variable, the limit would just be the constant. So the actual value of this limit would then be approximately -0.0054 according to wolfram alpha.

    • @Ricocossa1
      @Ricocossa1 4 роки тому +3

      The notation was ambiguous to start with, so one could argue that the ∂ appearing in the integrand is not the one from the integral, but the one from the limit. XD

    • @poutineausyropderable7108
      @poutineausyropderable7108 4 роки тому

      It's like taking the limit as x-> 0 or 6.

    • @poutineausyropderable7108
      @poutineausyropderable7108 4 роки тому

      @@adamjennifer6437 Fucking bot.

  • @3141minecraft
    @3141minecraft 8 місяців тому +1

    30:58 I am pretty sure this is just the area of trapezoid
    it is way easier this way

  • @georgekikas
    @georgekikas 4 роки тому +8

    30:54 Damn that's a surprisingly correct way to pronounce 'χ'

  • @arnau7915
    @arnau7915 4 роки тому +6

    Jens and Andrew: *struggle when using common letters as variables*
    Greeks: First time?

  • @itratabbas7669
    @itratabbas7669 4 роки тому +229

    NOTICE ME PAPA FLAMMY

  • @jeff_1300
    @jeff_1300 4 роки тому +1

    Holy canoli we have received yet another comedic addition to this lovely site

  • @ShaunakDesaiPiano
    @ShaunakDesaiPiano Рік тому

    8:29 I think Dominated Convergence Theorem holds here - that’s why you can exchange limits.

  • @aviliocarcamo6454
    @aviliocarcamo6454 3 роки тому

    19:40 For No. 9) you can do -> (d^2+1)-1 then split the integral and there you have it

  • @1996Pinocchio
    @1996Pinocchio 4 роки тому +4

    I want to be as confident as Andrew!

  • @LiamInviteMelonTeee
    @LiamInviteMelonTeee 4 роки тому +29

    Number 9: just write d^2 +1 -1 kid flammy 19:20

    • @xD-jm2ie
      @xD-jm2ie 4 роки тому +1

      Was gonna say... simplifies to d-(1/d^2+1) which are both standard integrals...

    • @tupoiu
      @tupoiu 4 роки тому

      u still need tan substitution to integrate 1/(d^2+1)

    • @ethanbottomley-mason8447
      @ethanbottomley-mason8447 4 роки тому +7

      @@tupoiu Not if you just say it is tan^-1 and leave the proof as an exercise for the reader.

    • @xD-jm2ie
      @xD-jm2ie 4 роки тому +1

      As I was saying, standard integral

  • @1996Pinocchio
    @1996Pinocchio 4 роки тому +9

    Joke's on you, papa flammy. Python can calculate arbitrary large numbers, including 420^71.

  • @TheFilozof32
    @TheFilozof32 4 роки тому +1

    34:12 it's integral of x so you should use formula for triangle and rectangle area

  • @Astronautakaty
    @Astronautakaty 4 роки тому +1

    8:31 it converges uniformly 😎

  • @koelsche_falafel
    @koelsche_falafel 3 роки тому +1

    honestly, I was laughing more about how you calculated the integrals in Dotson manner, than about the memes :D

  • @jcudejko
    @jcudejko Рік тому

    7:39 I never knew I needed to hear a german gentleman say "that ain't bad, at all" so much but here we are

  • @mrstruggle2846
    @mrstruggle2846 4 роки тому +1

    For the d^2/d^2+1, you could add 1 and subtract 1 in the numerator, so (d^2+1-1), then split into 1-(1/d^2+1) which integrates into d-arctan(d)+C

  • @physicsforever4793
    @physicsforever4793 4 роки тому +125

    28:43
    "Eins... Epstein's theory of heat capacity"
    Wtf!?!?!

    • @MrFram
      @MrFram 4 роки тому +30

      daily reminder that heat capacity didn't kill itself

    • @Exachad
      @Exachad 4 роки тому +2

      Andrew killed Epstein

  • @makiarizona
    @makiarizona 7 місяців тому +2

    you inspired me to use shitty variables for my math problems lol

  • @aadhiimrana3771
    @aadhiimrana3771 2 роки тому +1

    Jens, at 19:37 you literally can add and subtract 1 in the numerator, then club them to be integral of (d^2 +1/d^2+1)-(1/d^2+1) dd. So then the first fraction gives d and the second gives arctan d after substituting d as tan d. Or you can do it the physics way which is remember that integral of 1/(d^2+1) dd is arctan d

  • @kshitijsalunke2620
    @kshitijsalunke2620 4 роки тому +1

    more of these videos needed

  • @Unluckyleon
    @Unluckyleon 4 роки тому +4

    you know, I'm a 16-year-old and I have no clue what is going on or why they're laughing so much but i like this part of youtube

  • @fahyaz3643
    @fahyaz3643 4 роки тому +43

    Just sayin', but you could've just rewritten it like this instead;
    (d²+1)/(d²+1) - 1/(1+d²)
    and avoided all that monstrosity lmao.

  • @marshalepine248
    @marshalepine248 4 роки тому +2

    Make more of these videos they are great.

  • @dhoyt902
    @dhoyt902 4 роки тому +1

    Hey FM, this is one of the best formats you have presented. You can def. milk this cow.

    • @PapaFlammy69
      @PapaFlammy69  4 роки тому

      But it's soooooooooooooo much editing XD

  • @rayzhang3425
    @rayzhang3425 4 роки тому

    Oh I just realized you put Child of Light soundtrack in the back! Thanks, I love it

  • @Andr_ss
    @Andr_ss 4 роки тому +1

    31:00 since pi = e = 3, then the result is 0 since we integrating from 3 to 3

  • @bryantwiltrout5492
    @bryantwiltrout5492 4 роки тому +1

    You and Andrew are hilarious 😂😂 I cracked up every time Andrew had to say “approximately” when he had to integrate with respect to approximately. You guys should definitely do another one at some point.

  • @ManpreetSingh-lt8fp
    @ManpreetSingh-lt8fp 4 роки тому +1

    @32:07 you can either use the gaussian trick or graph the function and calculate the area of triangle?!

  • @squeezy8414
    @squeezy8414 2 роки тому +1

    For the problem at 30:18, could you take the definition of the definite integral to be the area under the graph of a function, and as such equate that to the area of the triangle formed under the graph i.e. 1/2bh ?

  • @jony27003
    @jony27003 4 роки тому +6

    Literally laughed my ass off for nearly the entire video 🤣

  • @alphastar5626
    @alphastar5626 Рік тому

    This humour is so niche, i dont know how i reached it but i love it

  • @ammyvl1
    @ammyvl1 4 роки тому +37

    you could've just had him come upstairs instead of overlaying the videos

  • @Swybryd-Nation
    @Swybryd-Nation 3 роки тому

    The first integral is Coxeter’s integral. In Nahin’s Inside Interesting Integrals it was THE single, longest evaluation in the book.

  • @richardreasoner728
    @richardreasoner728 4 роки тому

    Bruh this is so creative. LOVE IT

  • @sheldonrego6121
    @sheldonrego6121 4 роки тому

    23:00 you could just add and subtract 1 in the numerator and separate it into 2 fractions

  • @ronakbhaaya
    @ronakbhaaya 4 роки тому +1

    22:05 take (d² + 1 = t) then differentiate it. (d.d(d) = dt/2). Now just replace the values in integral and you've an ans. [ln(√(d²+1))].

  • @noahmunz3201
    @noahmunz3201 4 роки тому +1

    Whenever I have doubt about my integrations skills watching Flammy's "hard integration" videos, I watch this.
    Then, I feel instantly better about my skills lmao

  • @gooseart2222
    @gooseart2222 4 роки тому +6

    What an astonishing video, I should be studying, but YLYI is much better. Thank you for the entertainment.

  • @samfrank3999
    @samfrank3999 4 роки тому

    19:50 use long division. d^2/d^2+1=1-1/(1+d^2) which is trivial

  • @belatijagadbintangsyuhada7341
    @belatijagadbintangsyuhada7341 4 роки тому +1

    your voice on integrating the dd one makes it even funnier haha

  • @DavidChristmas
    @DavidChristmas 4 роки тому +3

    24:40 integaral

  • @HarmonyHeart
    @HarmonyHeart 4 роки тому +2

    Hello Papa Flammy ! I really love what you do on your channel ! This concept is soooooo cool ! If one day I want to reuse it, can I ?
    Keep doing the great work !

  • @kevindoku1375
    @kevindoku1375 4 роки тому

    15:40 This gave me PTSD of my mathematical physics complex analysis class back in university.

  • @helloitsme7553
    @helloitsme7553 3 роки тому

    33:50 nice, I would've personally done it with a Riemann sum

  • @vcl-eq3vv
    @vcl-eq3vv 4 роки тому

    I watched the whole thing. Loved every single part

  • @T3WI
    @T3WI 4 роки тому +5

    That dd integral gave me a stroke

  • @tridivsharma2342
    @tridivsharma2342 2 роки тому

    Flammy please do more of these, this could be such a good series

  • @federicopagano6590
    @federicopagano6590 4 роки тому +1

    9:01 if the variable runs from 42 to 419 then u cannot take the zero limit a contradiction

  • @brunoetcheverry8977
    @brunoetcheverry8977 4 роки тому +1

    I enjoyed the video ! Isn't the one at 16:00 wrong because of the argument used but gives the right result ? For me, the denominator is nor even or odd function but the denominator - 1/2 is odd, so you can write the all thing it as even(x)*(odd(x)+1/2) so you just integrate the even part times 1/2 and it gives the same results. Cheers !

  • @ryanatashkar4977
    @ryanatashkar4977 4 роки тому +1

    I genuinely think you would be the best Maths teacher of all time

  • @knobhack
    @knobhack 4 роки тому +1

    Literally my conversation with another smart kid in the class.

  • @Rancor9000
    @Rancor9000 3 роки тому

    Love the Forest Haven music in the background.

  • @jesusbianchi772
    @jesusbianchi772 4 роки тому

    This video cured my depression , flammable maths laughing is the best therapy

  • @isaacdeutsch2538
    @isaacdeutsch2538 3 роки тому +3

    Papa for χdχ just integrate by parts! Setting up the equation gives you int( χdχ ) = χ² - int( χdχ ). Add the integral to both sides and divide by two: You get χ²/2 ! :D

  • @HDitzzDH
    @HDitzzDH 4 роки тому +3

    On integral #9, we could just use a quick long division on that ugly expression x² / (x²+1), we can turn it into 1 - 1/(x²-1) which is easy to integrate, it would just be x - arctan(x) + C :)