Can you find and justify the area of the Blue triangle? | (Math skills explained) |

Поділитися
Вставка
  • Опубліковано 16 лис 2024

КОМЕНТАРІ • 55

  • @mathbynisharsir5586
    @mathbynisharsir5586 Рік тому +5

    Excellent presentation sir

    • @PreMath
      @PreMath  Рік тому

      Many many thanks ❤️
      You are awesome. Keep it up 👍

  • @handy7482
    @handy7482 Рік тому +5

    -Tangents from the same point are equal in length:
    390^2 = (r+126)^2 + (r+ 264)^2
    152100 = r^2 + 252r+15876 + r^2 + 528r + 69696
    152100 = 2r^2 + 780r + 85572
    2r^2 + 780r-66528 = 0
    R = 72
    Side 1 = 126 + 72 = 198
    Side 2 = 264+ 72=336
    1/2 *336*198 = 33,264

  • @kennethstevenson976
    @kennethstevenson976 Рік тому +11

    I used the tangents to the radius X to form the Pythagorean Relationship (x+126)^2 + (x+264)^2 = 390^2 . Your solution eliminates the need for most of the large multiples and the quadratic formula. I worked the problem using a calculator and got the same answer but I appreciate the use of multiple variables to reduce the amount of computation of large numbers to the last step. I hope to acquire this ability through practice.

    • @soli9mana-soli4953
      @soli9mana-soli4953 Рік тому +2

      Tò semplify computations you can divide for G.C.D. between 126 and 264 that Is 6, then find radius in a smaller similar triangle. At the end moltiply the area for 36

  • @Abby-hi4sf
    @Abby-hi4sf Рік тому +6

    You presented a new way of finding area! So neat. No words to explain, I just loved it!

    • @PreMath
      @PreMath  Рік тому

      Thanks a lot 😊 ❤️

  • @nineko
    @nineko Рік тому +12

    This is nice, but you took an extremely roundabout way, I was expecting to see the ever-present Pythagorean theorem:
    (264 + 126)² = (264 + x)² + (126 + x)²
    x = -462 (no)
    x = 72 (yes)
    [(264 + 72) • (126 + 72)] / 2 = 33264

    • @PreMath
      @PreMath  Рік тому

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @dirklutz2818
    @dirklutz2818 Рік тому

    Amazing!

  • @ramanivenkata3161
    @ramanivenkata3161 Рік тому

    Excellent working 👍

  • @AnonimityAssured
    @AnonimityAssured Рік тому +1

    An enjoyable and instructive problem.
    Spoiler alert.
    Labelling a generalized figure:
    𝑎 = AD and AF;
    𝑏 = CD and CE;
    𝑟 = DO, OE, OF, BF and BE.
    Additional line segments:
    AO, OC, DO, OE, OF.
    𝑟 (𝑟 + 𝑎 + 𝑏) = (𝑟 + 𝑎) (𝑟 + 𝑏) / 2;
    2𝑟 (𝑟 + 𝑎 + 𝑏) = (𝑟 + 𝑎) (𝑟 + 𝑏);
    2𝑟 (𝑟 + 𝑎 + 𝑏) = 𝑟 (𝑟 + 𝑎 + 𝑏) + 𝑎𝑏;
    2𝑟 (𝑟 + 𝑎 + 𝑏) − 𝑟 (𝑟 + 𝑎 + 𝑏) = 𝑎𝑏;
    𝑟 (𝑟 + 𝑎 + 𝑏) = 𝑎𝑏.
    As 𝑟 (𝑟 + 𝑎 + 𝑏) is the area of the triangle, 𝑎𝑏 must be the same area.
    In our example, 𝑎 = 264 and 𝑏 = 126.
    So, the area of the triangle = 𝑎𝑏 = 264 ∙ 126 = 33,264 square units.
    For completeness:
    𝑟 = 72 (worked out with the quadratic formula).
    Area = 𝑟 (𝑟 + 𝑎 + 𝑏)
    = 72 (72 + 264 + 126)
    = 72 (462)
    = 33,264.
    Area = (72 + 264) (72 + 126) / 2
    = (336) (198) / 2
    = (336) (99)
    = 336 ∙ 100 − 336
    = 33,600 − 336
    = 33,264.

  • @misterenter-iz7rz
    @misterenter-iz7rz Рік тому +6

    (126+264)^2=(126+r)^2+(264+r)^2, 390^2=2r^2+780r+126^2+264^2, r^2+390r-33264=0, r=72 or 462 rejected, therefore the answer is (1/2)(72+126)(72+264)=33264.😊

    • @PreMath
      @PreMath  Рік тому +1

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

    • @Copernicusfreud
      @Copernicusfreud Рік тому

      That is how I did it. The video was way too complicated for me.

    • @michaelkouzmin281
      @michaelkouzmin281 Рік тому +2

      r = -462 rejected.👍

    • @misterenter-iz7rz
      @misterenter-iz7rz Рік тому

      Generally for any length of hypotenuse a+b, the area of the right-angled triangle is simply ab.😘

  • @mohammedkhettab9965
    @mohammedkhettab9965 Рік тому +2

    ❤❤❤❤❤

    • @PreMath
      @PreMath  Рік тому

      Thanks dear ❤️
      Stay blessed 🙏

  • @alexandrkushnir1380
    @alexandrkushnir1380 Рік тому +1

    Wow! What an elegant solution. The author just show and prove very rare formula of the area of the right triangle, while we know only the length of segments of hypotenuse formed by point of tangency of inscribed circle. It is much simple way to find the area of the triangle, rather to find out first the radius of the circle with such ugly digits then find the area of the triangle

  • @fikirfikir3039
    @fikirfikir3039 Рік тому +1

    هل يمكننا أن نعتبرها قاعدة حيث أن مساحة المثلث القائم الزاوية تساوي حاصل ضرب جزأين الوتر نتيجة رسم دائرة تلامس الأضلاع الثلاثة للمثلث ؟؟؟

    • @PreMath
      @PreMath  Рік тому +1

      صحيح جدا! ❤️

  • @cvb-bm5dg
    @cvb-bm5dg 3 місяці тому

    Thank you very much for your very interesting math problems and your excellent, pedagogically meticulous, sometimes surprising solutions which makes it possible even in my age of 89 to learn new ways of solving such problems.

  • @ybodoN
    @ybodoN Рік тому

    What a lovely formula! 😍

  • @MihaiKusko
    @MihaiKusko Рік тому +2

    (x+y)^2 = (x+r)^2+(y+r)^2 so x^2+2xy+y^2 = x^2+2xr+r^2+y^2+2yr+r^2 then we can drop x^2 and y^2 and then divide by 2 and we obtain xy= r^2+ r(x+y) eq 1. The triangle area is (x+r)(y+r)/2=( xy+(x+y)r+ r^2)/2. Using eq 1 we notice that the triangle area is xy!

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому

    Per la similitudine dei triangoli rettangoli risulta (264+r)^2+(126+r)^2=(264+126)^2...r=72...A=bh/2=(264+72)(126+72)/2=336*99=33600-336=33264

  • @jimlocke9320
    @jimlocke9320 Рік тому +1

    Others beat me to it! Yes, just apply the Pythagorean theorem and the theorem "tangents to a circle from a point have equal length", as well as determining that BE = BF = r, solve for r, compute the lengths of the 2 sides and use the formula for area of a right triangle.

  • @marioalb9726
    @marioalb9726 Рік тому +2

    Area of right triangle is equal to the multiplication of both segments of hypotenuse
    A = 264 x 126 = 33264 cm²
    ( Solved √ )
    Demonstration was done several times in previous videos.

  • @hcgreier6037
    @hcgreier6037 11 місяців тому

    Let the long section of the hypothenuse be x and the short section be y.
    The area of such a triangle is simply x·y = 264·126 = 33264.
    As the general calculation shows
    2·(x·r)/2 + 2·(y·r)/2 + r² = (x+r)·(y+r)/2
    x·r + y·r + r² = (x·y + x·r + y·r + r²)/2
    2·x·r + 2·y·r + 2r² = x·y + x·r + y·r + r²
    x·r + y·r + r² = x·y
    one can see that the left side is the area of the triangle, as shown in the 2nd line.
    So there is a general relationship between the area of the triangle and those hypotenuse sections that the triangle's incircle contact point creates at the hypothenuse.

  • @SanjaySinghaniaIN
    @SanjaySinghaniaIN Рік тому

    Much better to explicitly find the area as 0.5 x (M+r) x (N+r).
    From the diagram, we have,
    (M+r)^2 + (N+r)^2 = (M+N)^2
    => r^2 + r(M+N) - MN = 0
    => r^2 + r(M+N) + MN - MN - MN = 0
    => r^2 + r(M+N) + MN = 2MN
    => (M+r) (N+r) = 2MN
    dividing by 2 on both sides we get the LHS as in the form of aforementioned area, hence
    => Area of triangle = 0.5 (M+r) (N+r) = MN

  • @raya.pawley3563
    @raya.pawley3563 Рік тому

    Thank you

  • @n.662
    @n.662 Рік тому

    This is theorem! Very smart!)

  • @dimitarganchev3222
    @dimitarganchev3222 Рік тому

    Smartly avoided impossible quadratic equation. :)

  • @xof-woodworkinghobbyist
    @xof-woodworkinghobbyist Рік тому

    Smart solution!
    I went with Pythagore, and got a nice quadratic equation to find r.

  • @farzad1343
    @farzad1343 Рік тому

    Use Pythagorean theorem much easier to find out area

  • @じーちゃんねる-v4n
    @じーちゃんねる-v4n Рік тому

    Think x(1/6) s=(1/2)(44+r)(21+r)=(44+21+r)r=(65+r)r r^2+65r-924=0 s=924 S=36s=33264

  • @AndreasPfizenmaier-y7w
    @AndreasPfizenmaier-y7w 4 місяці тому

    Handy 7482 is Right. Exactly my Solution.

  • @comdo777
    @comdo777 Рік тому

    asnwer=145 cm isit

  • @wackojacko3962
    @wackojacko3962 Рік тому

    😉💯👍

  • @prossvay8744
    @prossvay8744 Рік тому

    33264 square unit

  • @samuelbenet007
    @samuelbenet007 Рік тому

    J'étais parti faire du Pythagore, mais avec des grands nombres (390²), c'était avec la calculatrice obligatoire ^^

  • @logx-ow1us
    @logx-ow1us 6 місяців тому

    I used tangents but I’m too lazy to do the actual math;-;

  • @philipkudrna5643
    @philipkudrna5643 Рік тому

    I did it the same way, but failed to see that you don‘t need to calculate the radius (which is 72, btw…!)😂

  • @MrPaulc222
    @MrPaulc222 Рік тому

    I'm going for the tangents and Pythagoras methods. (126+r)^2 + (264+r)^2 = 390^2. That should give a value for r.
    r^2 + 252r + 15876 + r^2 + 528r + 69696 = 152100
    2r^2 + 780r + 85572 = 152100
    Simplify a bit by halving everything: r^2 + 390r + 42786 = 76050.
    Zero the RHS: r^2 + 390r - 33264 = 0
    It may be possible to factorise that, but I'll go for the quadratic formula as I have a calculator in my hand.(-390+or-sqrt(390^2 - 4* -33264)/2 = 72
    r=72.
    This makes the two short sides 198 and 336
    (198 * 336)/2 = 33264 square units.
    That's interesting as that number cropped up earlier. I have a feeling there was a simpler way for this one. Ho-hum.
    EDIT: I just skimmed over your video. I will take a longer look later, but that looks like it's worth my time studying as it can greatly shorten the calculations.. Thank you.

  • @MathsMadeSimple101
    @MathsMadeSimple101 Рік тому +1

    The triangle isn't actually blue.

  • @parthtomar6987
    @parthtomar6987 Рік тому +1

    It is class 10th question

  • @devondevon4366
    @devondevon4366 Рік тому

    33,264
    A different method
    This is 33,56,65 triplet scaled up by 6
    Draw a straight line from F to the circle's center
    AF=AD tangent circle theorem
    Draw a straight line from D to the circle's center
    CD=BF tangent circle theorem
    EB=FB radius of the circle
    Using Pythagorean c= 390 (126 +164
    a= 126+ r
    b= 264+r
    390^2 = (126 + r)^2 + (264 + r)^2
    0 =2r^2 + 780r -66,528
    0= r^2 + 390 r - 33,264 divide both sides by 2
    0= (r + 462) (r -72)
    r= 72
    Hence, a = 126 + 72 = 198
    Hence, b = 264 +72 =336
    Hence Area of triangle = 336 * 198 * 1/2 = 33,264

  • @JSSTyger
    @JSSTyger Рік тому +1

    33,264

    • @PreMath
      @PreMath  Рік тому

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @misterenter-iz7rz
    @misterenter-iz7rz Рік тому +1

    Very large figures.😢

    • @PreMath
      @PreMath  Рік тому +1

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

    • @devondevon4366
      @devondevon4366 Рік тому +1

      It is a 33, 56, 65 Pythagorean triplet right triangle scaled up by 6. Therefore,
      you could use 44 and 21 instead by dividing 264 and 126 by 6.

  • @devondevon4366
    @devondevon4366 Рік тому

    33,264